Thursday, April 28, 2016

Annual Report on Global Catastrophic Risks 2016 (Extracts re. Climate Geoengineering)


Source 
Full Report PDF
Global Catastrophic Risks Annual Report 2016
http://www.globalchallenges.org/reports/Global-Catastrophic-Risk-Annual-Report-2016.pdf

Web pages 
Annual Report on Global Risks 2016
http://globalchallenges.org/annual-report-on-global-risks
Global Challenges Foundation
http://globalchallenges.org/

These are the main direct references:


From Chapter 2.1. Catastrophic climate change


(page 34)
MAIN ACTIONS AVAILABLE TO LIMIT THE RISK
There are three main ways to reduce the risks from climate change: adaptation to climate change, abatement of GHG emissions, and geo-engineering. It is likely to be very costly if not impossible to to avoid many of the impacts of non-catastrophic climate change by adaptation alone,31 and adapting to warming of 6°C or more is likely to be even more costly and difficult. 

 Turning to abatement, most economists agree that the best way to reduce GHG emissions is to impose a carbon tax or a cap and trade system.32 At present, the global price of carbon is approximately $4 per tonne, whereas according to Wagner and Weitzman, to fully price in the externalities from catastrophic climate change, a price of at least $40 could be required.33 

Scientists have demonstrated an approximately linear relationship between the total amount of carbon emitted and the resulting temperature increase.34 The majority of the carbon still underground is in the form of coal.35 If we were to avoid burning the remaining global coal reserves we would likely avoid catastrophic levels of climate change.36 States could commit to building no new coal-fired power stations without carbon capture and sequestration to limit the fraction of the global coal reserves which are burned. 

Geo-engineering – the deliberate use of technology to alter the world’s climate – in the form of Carbon Dioxide Removal (CDR) or Solar Radiation Management (SRM), could also help to reduce the risk of catastrophic climate change, as a complement to GHG abatement. CDR techniques, such as carbon sequestration or iron fertilisation of the oceans, would remove CO2 from the atmosphere and thereby help us move towards net neutral or net negative emissions.37 SRM techniques, such as the injection of sulphates into the stratosphere, cause global cooling by reflecting sunlight. The benefits and risks of geo-engineering are discussed in more detail in section 2.5.38


From Chapter 2.5 Emerging risks
(Page 52)

In the coming decades, emerging technologies will provide major benefits to society, but they may also create significant and unprece - dented risks. Certain types of 
biotechnology, if more widely accessible, could give terrorist groups the access to pathogens as dangerous as smallpox. Geoengineering technologies could give single countries the power to unilaterally alter the earth’s climate. Finally, artificial general intelligence could, if developed, leave human control. Technological risks could emerge very quickly and give certain groups large and perhaps unprecedented destructive power. Moreover, some emerging technologies may be particularly difficult to control because barriers to access the technology may be quite low. 

(Page 58)
C. GEOENGINEERING 
As mentioned previously in this chapter, geo-engineering – in the form of Carbon Dioxide Removal (CDR) or Solar Radiation Management (SRM) – could help to limit the risks of catastrophic climate change. CDR techniques, such as ocean fertilisation or carbon sequestration, remove Carbon Dioxide from the atmosphere, whereas SRM techniques, such as cloud brightening or the injection of sulphates or other particles into the stratosphere, reflect the sun’s light and heat back into space. Certain forms of CDR could carry major risks. For example, ocean fertilisation using iron or urea could pose major risks to marine ecosystems.125 However, most forms of SRM are thought to carry much greater risks than most forms of CDR,126 and worries about civilisation-threatening consequences have generally focused on SRM (and in particular on currently the leading form of SRM: the injection of sulphate particles into the stratosphere).127 The remainder of this section will therefore focus on SRM only. SRM is the only known technique for quickly stopping (or even reversing) the rise in global temperatures. This means that it could be used as a complement to GHG reduction, to manage temperatures while the world phases out fossil fuels. Some have proposed that SRM could provide insurance against a ‘climate emergency’, such as unexpected abrupt and extreme warming.128 Thus, on some scenarios, failing to use SRM could constitute a global catastrophic risk. Moreover, SRM has the potential to reduce the costs of warming at very low cost. Some estimate that the annual cost of stratospheric aerosols could be less than $10 billion per year, which is orders of magnitude less than the costs of climate change mitigation strategies.129 

POTENTIAL IMPACT OF THE RISK 
Four main arguments have been given for the view that SRM brings global catastrophic risks. Firstly, while existing models suggest that SRM could reduce the catastrophic effects of climate change and will not bring their own catastrophic impacts, it may nevertheless bring currently unknown risks, particularly through impacts on global precipitation.131 The climate system is imperfectly understood and the deployment of a novel technology with global effects is inherently risky. Whether the use of SRM is more risky than allowing the planet to warm is one of the key questions for anyone considering using SRM. Secondly, because SRM is so cheap, individual states could feasibly deploy it and unilaterally bring about global climatic impacts. Moreover, individual states might also have the incentive to do this because they could be particularly badly affected by climate change.132 Individual states acting alone may be less likely to properly take into account the interests of other states and may be concerned about catastrophic consequences in other regions. 

Thirdly, sudden termination of SRM would lead to rapid and severe global warming.133 There are some reasons to think that an SRM system could be very resilient against external shocks and termination. If the current deployer were to suddenly stop SRM for some reason, every other country would have strong incentives to resume SRM.134 Thus, sudden termination might only be likely in the event of a severe global catastrophe which undermines the capacity of all countries to use SRM.135 

Finally, research into geo-engineering or advocacy for geo-engineering could present a ‘moral hazard’ in that it could discourage GHG reduction efforts.136 All major reports studying SRM have concluded that it does not present an alternative to emissions reductions, as it only masks the effects of GHGs and does nothing to counter ocean acidification.137 Therefore, it could be problematic if geo-engineering drew a disproportionate amount of policy attention. However, it is important to bear in mind that there are countervailing reasons in favour of SRM research and advocacy. 

LIKELIHOOD OF THE CATASTROPHE 
The probability that there will be a global catastrophe brought about by SRM depends on many factors, including the timing, speed and severity of global warming; the state of SRM technology and our knowledge of the climate system; the response of the climate system to SRM; the form of SRM deployed and how it is used; and how well the world does at organising governance of SRM. There is obviously very large uncertainty about all of these factors. 

We argued above that unless strong action is taken soon, there is a sizeable chance of catastrophic warming. Catastrophic warming would create very strong incentives to use SRM. Therefore, unless strong GHG reduction action is taken soon, the chance that SRM is used will increase. The greatest chance of catastrophe probably comes from poorly planned and governed the use of SRM, perhaps by an individual state or small group of states. Since most of the risks of a well-governed and well-planned form of SRM are unknown, it is very difficult to say how likely that form of SRM is to produce a global catastrophe. 

Finally, it is unclear the impact research into, advocacy for, or preparation for, geo-engineering would have on global willingness to cut greenhouse gas emissions. Therefore, it is not clear to what extent geo-engineering is a moral hazard. 

MAIN ACTIONS AVAILABLE TO LIMIT THE RISK 
The main way to reduce the risks from SRM would be to take strong action on GHGs to reduce the expected costs of climate change and thereby reduce the incentives to geo-engineer. Further research into the different kinds of SRM and into the response of the climate to them would reduce the unknown risks of SRM. Finally, working to develop geo-engineering governance through climate treaties and through global institutions might limit the risks of unilateral SRM.138 However, both of these actions might also have moral hazards. We cannot settle the moral hazard debate here, but it is important for policymakers to be aware of these issues.

From Chapter 2.7. 
B. HOW WE MADE THESE ASSESSMENTS ABOUT PARTICULAR RISKS
(page 80)

Finally, risks from geoengineering are another emerging technological risk where the current risks seem low. But because geoengineering may be employed to tackle climate change, it seems important to build a more comprehensive understanding of the risks it poses in itself. For this reason we have put it in the higher category for attention


From Chapter 3 
3.1. Drivers of individual risks
(Page 74)

CATASTROPHIC CLIMATE CHANGE & GEO-ENGINEERING
The risk of catastrophic climate change and the risk of a geoengineering catastrophe are strongly influenced by the level of GHG emissions. These depend on factors including the amount of energy the world consumes and the proportion of this which comes from fossil fuels. The total energy consumption is shaped by, among other things, population growth, economic development, and energy efficiency. The proportion of energy which comes from fossil fuels depends on other factors such as the rate of progress in clean energy technology development and the prevalence of economic incentives to adopt clean energy technologies.154 

Another important set of factors concern how the climate is likely to react to increased levels of GHG emissions. If the climate turns out to be generally more sensitive to GHG emissions than expected, or if “positive feedback loops” prove to be worse than anticipated, the risk of catastrophic climate change will in - crease.155 

Finally, the development of new geoengineering techniques might either decrease or increase global catastrophic risk. They could decrease global catastrophic risk if they prove to be an effective tool to mitigate catastrophic climate change.156 But they could increase risk if they have a high chance of causing a catastrophe of their own, or if they prove to be ineffective while at the same time leading countries to avoid emission abatement (as discussed in Chapter 2).15


From Chapter 3.2. Shared risk factors and interactions between risks
(page 80)

Nuclear war, geo-engineering, super-volcanoes, asteroids, and comets all pose global catastrophic risk in significant part because of the ‘particulate winter’ scenarios they might produce. By ejecting large amounts of smoke, dust, and/or sulphates into the stratosphere they could cause global cooling, sunlight loss, ozone loss, and subsequent agricultural disruption.166 Because so many risks share this mechanism, many strategies for resilience that address one risk address several. Food stockpiles and the ability to rapidly incerase production of alternate sources of food would increase resilience to a broad range of risks.167


Some media reactions:

More must be done to guard against global catastrophic risks
By Sebastian Farquhar, Huffpost Politics. 4/28/2016
http://www.huffingtonpost.com/sebastian-farquhar/more-must-be-done-to-guar_b_9798202.html

'Apocalypse' report warns killer robots, asteroids or global pandemics could wipe out humanity in the next five years
By RYAN O'HARE FOR MAILONLINE. 4/28/2016
http://www.dailymail.co.uk/sciencetech/article-3563204/Robots-nuclear-war-climate-change-list-catastrophic-threats-facing-humanity-2016.html

These Are the Most Serious Catastrophic Threats Faced by Humanity 
By George Dvorsky, GIZMODO. 4/28/2016
http://gizmodo.com/these-are-the-most-serious-catastrophic-threats-faced-b-1773661869


Tuesday, April 19, 2016

El Senado de EE.UU. hace un llamado para estudiar como hacer que la Tierra refleje más luz (Traducción)


Por Adrian Cho – Abril 19, 2016 – ScienceMagazine
Traducción de Oscar A. Ecobar (No afiliado)

Fuente:
To fight global warming, Senate calls for study of making Earth reflect more light
By Adrian ChoApr. 19, 2016

Los encargados de hacer el presupuesto nacional en el Senado de EE.UU. quieren que el Departamento de Energía (DOE por sus siglas en Inglés) estudie la posibilidad de hacer que la Tierra refleje más luz solar al espacio para luchar contra el calentamiento global. La reflectividad de la Tierra se conoce como su albedo, y la solicitud para estudiar la "modificación del albedo" viene en los detalles de un proyecto de proposición de gastos que fue aprobado por el Comité de Asignaciones del Senado para financiar al DOE, al Cuerpo de Ingenieros del Ejército, y a organismos afines para el año fiscal 2017, el cual comienza el 1 de Octubre. El proyecto de ley no especifica cuánto dinero debe gastarse en la investigación.

Los críticos argumentan que la modificación del albedo y otros esquemas de "geoingeniería" son peligrosos y podrían disuadir a las naciones de tratar de reducir sus emisiones de dióxido de carbono, el gas que proviene de la quema de combustibles fósiles, gas que atrapa el calor y está causando el calentamiento global mediante la absorción de cantidades cada vez mayores de la energía que viene del sol. Aún así, los investigadores del clima dicen que se debe averiguar cuál podría ser el potencial de la modificación del albedo.

"La recomendación es estupenda", dice Joyce Penner, una científica de la atmosféra de la Universidad de Michigan, Ann Arbor. La modificación del albedo "no es una solución al calentamiento global, es sólo una manera de evitar, tal vez, un punto de inflexión en el clima." Dice David Keith, un físico atmosférico de la Universidad de Harvard. "La ignorancia no es una buena base para la toma de decisiones, por lo que aprender más acerca de esto es extremadamente valioso, incluso si nos damos cuenta que nunca va a funcionar." Sin embargo, Keith añade, que los pocos estudios existentes sugieren que la modificación del albedo podría ayudar a mitigar algunos de los efectos del calentamiento global.

La convocatoria para la investigación adicional viene en un proyecto de ley que proporcionaría $ 5.4 mil millones para la Oficina de Ciencia del Departamento de Energía el próximo año. También se basa en las recomendaciones de un informe de febrero del 2015 de la Academia Nacional de Ciencias (NAS) titulado Intervención Clima: Reflejando la Luz Solar Para Enfriar la Tierra. Ese informe advierte expresamente que la modificación del albedo no debe ser desplegada ahora debido a que los riesgos y los beneficios son demasiado inciertos. Aún así, el Comité instó a una mayor investigación para averiguar cuáles podrían ser esos riesgos y beneficios.

El Comité de Asignaciones del Senado quiere que el DOE haga la investigación. "De la misma forma en que otros países han puesto en marcha programas de investigación sobre la modificación del albedo, el Comité recomienda al Departamento que examine las conclusiones del informe de la NAS ... y aproveche las capacidades computacionales y de modelización existente para explorar los impactos potenciales de la modificación del albedo", dice un informe que acompaña al proyecto de presupuesto del Senado. Esa indicación se incluye en una sección que describe las prioridades para el programa de la Oficina de Ciencia en la investigación biológica y ambiental, que actualmente cuenta con un presupuesto anual de $ 609 millones.

La modificación del albedo funcionaría rociando la atmósfera con diminutas partículas o aerosoles que reflejarían la luz solar e imitan procesos naturales. Por ejemplo, en 1991 el volcán Pinatubo en las Filipinas arrojó 20 millones de toneladas de dióxido de azufre en la estratosfera, que abarca altitudes entre 10 a 50 kilómetros. Allí, el dióxido de azufre produjo aerosoles que reflejaron suficientemente la luz solar reduciendo la temperatura global en un estimado de 0,3° C durante 3 años. La modificación del albedo también podría funcionar mediante el uso de aerosoles para sembrar la formación de nubes en una capa atmosférica más baja llamada troposfera.

Sin embargo, el informe de la NAS también señaló que los efectos potenciales de la modificación del albedo siguen siendo poco conocidos y cuantificados. Los científicos carecen incluso de las herramientas de observación para medir los efectos de la modificación del albedo, según el informe. Para hacer frente a estas deficiencias, el informe solicita un programa de investigación, incluyendo ensayos de campo a escala más pequeña, que tendrían como objetivo "mejorar la comprensión de la variedad de clima y otros efectos ambientales de la modificación del albedo, así como la comprensión de los efectos no deseados."

Por décadas estudiar la modificación del albedo ha sido tabú en los Los Estados Unidos, Keith dice, por temor a que distraiga de la meta final de llegar a cero emisiones de carbono. Pero teniendo en cuenta los efectos potencialmente catastróficos del calentamiento global, los científicos tienen la obligación de estudiar la idea, dice. "Debido a que la carga recaerá de manera desproporcionada en los pobres creo que hay un imperativo moral para hacerlo", dice.

Incluso si la modificación del albedo no funcionara, la investigación pagaria grandes dividendos, Penner predice. Entre los elementos con más incertidumbre en los modelos climáticos están los efectos de los aerosoles y sus interacciones con las nubes-precisamente las cosas pertinentes en la modificación del albedo-dice ella. Debido a estas incertidumbres, los investigadores solamente pueden estimar que la duplicación de dióxido de carbono atmosférico desde los niveles pre-industriales aumentaría la temperatura global entre 1° C y 5° C. "Si supiéramos el forzamiento de los aerosoles podríamos reducir ese rango", dice Penner.

Si el gobierno federal se hace de la vista gorda con la modificación del albedo, la investigación se llevará a cabo de todos modos por países como China e investigadores patrocinados por organizaciones no gubernamentales como la Fundación de Bill y Melinda Gates, dice Keith. Así que la verdadera elección es entre la exploración de la modificación del albedo de forma abierta o en relativo secretismo, dice: " Yo creo en la claridad y en la democracia, y realmente creo que esto debe ser realizado por el gobierno de EE.UU. y de una manera transparente."

El lenguaje del Senado está muy lejos de convertirse en ley. El pleno del Senado todavía tiene que actuar en la medida, que en última instancia tendría que reconciliarse con los niveles de gasto del Departamento de Energía aprobados por la Cámara de Representantes. Cualquier factura final tendría que ser firmada por el presidente.

DOI: 10.1126/science.aaf4148 (En Inglés)

To fight global warming, Senate calls for study of making Earth reflect more light
By Adrian 
Cho Apr. 19, 2016

Creative Commons License
A #Geoengineering #Climate Issues blog - Geoingeniería by Oscar and Jocelyn Escobar is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.Licencia Creative Commons
A #Geoengineering #Climate Issues blog por Oscar y Jocelyn Escobar se distribuye bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.