Este artículo sobre la fertilización oceánica es muy bueno y conciso aunque no menciona nada del experimento de Russ George y de la Haida Salmon Restoration Corporation en el 2012!
El articulo original en Hablando de Ciencia
http://www.hablandodeciencia.com/articulos/2013/09/02/que-fue-de-la-fertilizacion-oceanica/
Hace unos años, la fertilización océanica con hierro como forma de lucha contra el cambio climático, fue un auténtico boom.
En el último año, el tema ha estado un poco parado, pero ¿qué ha sido
de esta fertilización? ¿Se sigue trabajando con la idea o se ha
abandonado? ¿Funcionó o fue un fracaso?
Uno de los mecanismos para mantener constantes las concentraciones atmosféricas de dióxido de carbono (CO2), el principal gas implicado en el cambio climático, ha sido la fijación de CO2 y
su secuestro, en sumideros naturales como bosques, turberas u océanos.
Éstos, actúan en la regulación global del clima y en la regulación
atmosférica de CO2, al ser el principal sumidero de carbono, absorbiendo cerca del 50% del carbono emitido. ¿Cómo?
1) Debido a la elevada solubilidad del CO2 con el agua, hay un intercambio atmósfera-océano y en las épocas de “enfriamiento atmosférico” hay una retirada del CO2 por acción de las corrientes termohalinas, encargadas
de la circulación de las masas de agua del océano y por su papel
significativo en el flujo neto de calor desde las regiones tropicales
hacia las polares, y su influencia sobre el clima terrestre como ocurrió durante la última glaciación.
2) la precipitación del CO2 disuelto como bicarbonato (HCO3-), en carbonato de calcio (CaCO3) realizado por corales y otros invertebrados
3) Bomba biológica,
realizada por la actividad fotosintética de las algas microscópicas que
constituyen el fitoplancton marino, a pesar de que apenas representan
el 1% de la biomasa fotosintética, son los responsables de
aproximadamente el 50% de la fijación de carbono oceánico (Falkowski, 2000).
Sin embargo, el océano es incapaz de absorber el exceso de CO2,
por lo que los procesos que acabamos de ver, en la actualidad ven
mermada su capacidad, entre otras cosas, por procesos de acidificación
oceánica o por la reducción del fitoplancton oceánico (Boyce et al., 2010; Cao & Caldeira, 2010). En este artículo vamos a intentar dar una aproximación de lo que se ha estado realizando para mejorar la fijación de CO2
por el mecanismo de la bomba biológica, mediante la fertilización
oceánica con hierro (Fe), nutriente limitante del fitoplancton (Denman, 2008; Huesemann, 2008) ya que el Fe es un micronutriente necesario para que se pueda realizar la fotosíntesis.
Desarrollo
Anteriormente a los años 80, había una
aproximación de cómo afectaban las diferentes concentraciones de metales
y nutrientes a la cantidad de fitoplancton y es a partir de estos años,
cuando se plantea la existencia de zonas oceánicas con alta
concentración de macronutrientes (nitrato, fosfato y ácido silícico)
pero baja de clorofila, conocidas como Regiones HNLC (High-Nutrient, low-chlorophyll).
Con una ocupación cercana del 20% de la
superficie oceánica, comprenden el Pacífico ecuatorial y el Antártico y
están caracterizadas por tener afloramientos de nutrientes por la
circulación oceánica, pero alejadas de los desiertos, con lo que apenas
llegan partículas en suspensión, como las partículas de Fe. Esta
reducción en la llegada del hierro, genera bajas concentraciones de
clorofila, ya que el Fe es necesario para la asimilación de CO2 en la fotosíntesis, actuando por tanto como nutriente limitante (Martin & Fitzwater 1988; Brand, 1991).
En 1993 se inician los primeros estudios para comprobarlo in situ, con la expedición IronEx I, que añadió de forma experimental en una zona de 100 km2,
casi 400 kg de Fe. Se observó cómo la concentración de clorofila
aumentaba 3 veces, aunque al poco tiempo decaía. En 1995 con la IronEx
II, se fertilizó un área de 1.200 km2 al SO de las Galápagos con 450 kg de Fe y se ve la existencia de un boom de diatomeas, aumentando 27 veces la concentración de clorofila (Hanson et al. 2000).
Resultados similares también se vuelven a
observar con más expediciones (1998-2002) con la Voyage 2, Soiree,
EisenEx, SEEDS o SOFeX (Markels & Barber, 2001; Buesseler et al. 2004; Boyd & Bowman, 2008), observándose incrementos en las concentraciones de clorofila, aunque no se mantenían, por la falta de nutrientes constantes (Trick et al., 2010), lo que provoca el inicio de una controversia en el mundo científico sobre los posibles efectos que podría tener tanto en el medio acuático (Johnson & Karl, 2002).
Efecto de la fertilización oceánica y caída de las poblaciones de diatomeas – Fuente SOEST (University of Hawai’i)
El espaldarazo definitivo a la necesidad
de fertilizar el océano para aumentar el fitoplancton y por tanto
inducir una mayor retirada de CO2 atmosférico, llegó cuando se comprobó que los océanos tenían falta de Fe y por tanto la fotosíntesis era menos efectiva (Behrenfeld et al., 2006).
Tras 12 años y 58.000 km muestreando fitoplancton, observaron que en el
Pacífico, había una falta de Fe, por lo que no podía hacer de forma
correcta la fotosíntesis, dejando de fijar entre el 2 y 4% del CO2 atmosférico al año.
En 2007, la expedición EIFEX, comprobó
que el fitoplancton se hundía a los 35 días, después de esparcir 3
toneladas de Fe. Con estos resultados, comenzaron a aparecer otros
proyectos públicos y privados (Planktos, Climos, GreenSea Ventures o
LOHAFEX) (Kintisch, 2007).
Experimento EIFEX – Adaptado de Should Oceanographers Pump Iron? Science Vol 318: 1368-1370
El más polémico, ha sido el LOHAFEX, un proyecto indio-alemán, que consistió en verter 20 toneladas de sulfato de hierro (FeSO4), en 300 km2 del Océano Antártico, a pesar de las protestas de Argentina.
La intención era comprobar los efectos de
la fertilización y el aumento del fitoplancton, así como en la cadena
trófica, especialmente el krill y en caso de salir bien, la idea de los
investigadores sería que fertilizando los 50 millones de km2 del Océano Antártico y retirarían de la Atmósfera sobre 1 Gt de carbono (mil millones de kilos) anualmente (González, 2009).
La idea inicial era que las partículas
muertas de fitoplancton fueran hacia el fondo y aunque a los 14-15 días
se observó un aumento de la concentración de fitoplancton, aquellas
aguas eran escasas en ácido silícico, necesario para la formación del frústulo (el “esqueleto externo”) de las diatomeas, por lo que no funcionó, al favorecer el crecimiento de copépodos y a su vez de anfípodos (Brahic, 2009). De esta forma, la absorción de CO2 fue menor de la prevista,
ya que todo el fitoplancton no se hundió en el fondo, con lo que la
hipótesis inicial de que el fitoplancton una vez muerto se hundiría en
el fondo y por tanto se retiraría más CO2, no era factible.
En otro experimento iniciado en 2007 y realizado en el Golfo de Alaska (Trick et al., 2010), se vio cómo el crecimiento de diatomeas del género Pseudonitzschia, productoras de la sustancia tóxica del ácido domoico (DA) eran mayores que de las resto de especies de diatomeas. Mediante muestras recogidas en la Ocean Station Papa (50°N, 145°W) donde en años previos se habían realizado otros experimentos, se vio que sólo había presente una especie como era P. turgidula.
Las muestras se cultivaron en laboratorio
y a pesar del aumento de la biomasa total de clorofila hasta en un 40%,
la fertilización de Fe y también con trazas de cobre (otro nutriente
limitante), favoreció más a Pseudonitzschia, que al resto de especies del fitoplancton no tóxicas, doblando su abundancia en 9 días, con lo que el aumento de DA perjudicaría a otros organismos como peces y aves marinas, obligando al cierre de pesquerías, por lo que relación coste/beneficio, sería negativa, al provocar daños sobre el ecosistema.
Finalmente en uno de los artículos más recientes sobre el tema de la expedición EIFEX, se ha visto, que la fertilización oceánica, en realidad parece que funciona, al demostrarse que una proporción sustancial de carbono de una floración inducida de algas se hundía hasta el fondo del mar (Smetacek et al., 2012). En un artículo publicado el año pasado en Nature,
pero con datos de 2004, anteriores a los del EIFEX que comentamos
anteriormente, vieron cómo parecía que funcionaba lo de hundir el
fitoplancton.
“Hemos sido capaces de demostrar que más
del 50% de la floración de fitoplancton se hundió por debajo de 1.000
metros de profundidad lo que indica que su contenido de carbono puede
ser almacenado en el océano profundo y en los sedimentos del fondo
marino subyacentes en escalas de tiempo de más de un siglo”. “La
controversia en torno a los experimentos de fertilización con hierro ha
dado lugar a una evaluación exhaustiva de los resultados antes de su
publicación”, comentaban los autores como una explicación para la larga
demora entre la realización del experimento y la publicación final en Nature.
Conclusiones
El potencial de retención de CO2 mediante la fertilización oceánica es limitado y el riesgo de unos posibles efectos secundarios son muy elevados (Oschlies et al., 2010), por lo que antes de llevar a cabo los resultados in vivo, conviene intentar conocer en la medida de lo posible, los diferentes procesos implicados para evitar daños sobre el ecosistema.
Alguno de los últimos experimentos, parece funcionar y tener resultados
positivos, pero sin embargo, es insuficiente como para lanzar las
campanas al vuelo y decir que la fertilización oceánica funciona.
Para finalizar, les dejo una conferencia en Youtube de Antonio Tovar Sánchez, investigador del Departamento de Investigación en Cambio Global del CSIC bajo el título “Fertilización con hierro del océano: ¿funciona?“
Andrés Rodríguez Seijo
Otras lecturas:
Vierten 100 toneladas de sulfato de hierro al océano violando todo tratado mundial sobre biodiversidad
No comments:
Post a Comment