Wednesday, June 4, 2014

Resumen: Una evaluación interdisciplinaria de estrategias de ingeniería climática – Y artículo de Simon Fraser University


Una evaluación interdisciplinaria de estrategias de ingeniería climática

Frontiers in Ecology and the Environment > June 2014

Daniela F Cusack1*, Jonn Axsen2, Rachael Shwom3, Lauren Hartzell-Nichols4, Sam White5, and Katherine RM Mackey6,7

(Traducción libre de Oscar A. Escobar)

Mitigar aún más los cambios antropogénicos en el clima global requerirá la reducción de las emisiones de gases de efecto invernadero (“atenuación”), o bien sea  la eliminación del dióxido de carbono de la atmósfera y/o la disminución de la incidencia solar (“ingeniería climática"). Aquí, desarrollamos y aplicamos criterios para medir las dimensiones técnicas, económicas, ecológicas, institucionales y éticas de, y la aceptación del público, para estrategias de ingeniería climática; proporcionamos una clasificación relativa de cada dimensión; y ofrecemos un nuevo marco interdisciplinario para comparar opciones de reducción y de ingeniería climática. Mientras que la reducción sigue siendo la política más conveniente, ciertas estrategias de ingeniería climática, incluyendo la gestión de bosques y del suelo para el secuestro de carbono, meritan su aplicación en amplia escala. Otras estrategias propuestas, tales como la producción de biochar y la captura y almacenamiento geológico de carbono, se han valorado a un nivel un poco más bajo, pero merecen una mayor investigación y desarrollo. La fertilización con hierro de los océanos y la gestión  de la radiación solar, aunque rentable, recibió las calificaciones más bajas en la mayoría de los criterios. Llegamos a la conclusión de que a pesar de que la disminución debe seguir siendo la respuesta principal al cambio climático, los enfoques de bajo riesgo, rentables de ingeniería climática deben aplicarse como complementos. El marco que se presenta aquí tiene como objetivo orientar y priorizar aún más investigación y análisis, lo que conducirá a mejoras en las estrategias de la ingeniería del clima.

Artículo incluido abajo: La ingeniería climática no puede borrar el cambio climático (Articulo de Simon Fraser Univeristy)

1 Department of Geography, University of California, Los Angeles, Los Angeles, CA
2 School of Resource and Environmental Management, Simon Fraser University, Burnaby, Canada
3 Department of Human Ecology, Rutgers University, New Brunswick, NJ
4 Department of Philosophy, Program on Values in Society and Program on Environment, University of Washington, Seattle, WA
5Department of History, Ohio State University, Columbus, OH
6 Woods Hole Oceanographic Institution, Woods Hole, MA
7 Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA

*(dcusack@geog.ucla.edu)


Al estudio original en inglés:
An interdisciplinary assessment of climate engineering strategies
Frontiers in Ecology and the Environment > June 2014
http://www.esajournals.org/doi/abs/10.1890/130030

                                                   -----------------------------------------

La ingeniería climática no puede borrar el cambio climático
June 2, 2014 – SFU ONLINE
(Traducción libre de Oscar A. Escobar)

Jugar con el cambio climático a través de la ingeniería climática no va a resolver nuestros problemas climáticos, según un nuevo informe elaborado por investigadores de seis universidades, incluyendo la Universidad Simon Fraser.
Después de evaluar una serie de posibles enfoques que alteran el clima para disipar los gases de efecto invernadero y reducir el calentamiento, el equipo interdisciplinario concluyó que no hay otra forma de hacerlo. Tenemos que reducir la cantidad de carbono que se libera a la atmósfera.
Los conceptos ingeniosos no son realistas
"Algunas estrategias de la ingeniería del clima parecen muy baratos en papel. Pero cuando usted toma en cuenta otros criterios, como los riesgo ecológicos, la percepción pública y la capacidad de los gobiernos para controlar la tecnología, algunas opciones se ven muy mal", dice Jonn Axsen.
El profesor asistente en la Escuela de Recursos y Gestión del Medio Ambiente es uno de los autores de este estudio, que aparece en el último número de la revista revisada por expertos Fronteras en Ecología y Medio Ambiente.
Es el primer intento académico para clasificar una amplia gama de enfoques para minimizar el cambio climático en términos de su viabilidad, rentabilidad, riesgo, aceptación pública, la gobernabilidad y la ética.
La reducción de las emisiones aún es la mejor respuesta
Según el estudio, la reducción de emisiones -mediante alguna combinación de cambiar de combustibles fósiles a fuentes de energía bajas en carbono, la mejora de la eficiencia energética, y el cambio de comportamiento humano, sigue siendo la forma más eficaz de hacer frente al cambio climático.
Algunos enfoques climático –ingenieriles son prometedores
Los autores señalan, sin embargo, que algunos enfoques de la ingeniería climática son más prometedores que otros, y que se deben utilizar para aumentar los esfuerzos para reducir los efectos del cambio climático que resultan de la actividad humana.
Por ejemplo, las estrategias como la gestión de bosques y el almacenamiento geológico de dióxido de carbono pueden ser complementos útiles.
Otras estrategias climático-ingenieriles son menos  atractivas
Otras estrategias de la ingeniería climática son menos atractivas, tales como la fertilización con hierro de los océanos para absorber el dióxido de carbono o reducir el calentamiento global mediante la inyección de partículas en la atmósfera para bloquear la luz del sol.
“Tomemos el ejemplo del manejo de la radiación solar, que es la idea de poner  aerosoles en la estratosfera, algo así como lo que sucede cuando un gran volcán entra en erupción ", explica Axsen.
"Esta es una manera sorprendentemente barata para reducir la temperatura del planeta, y tenemos la tecnología para hacerlo. Pero nuestro estudio hizo otras preguntas importantes. ¿Cuáles son los riesgos ambientales? ¿Será esto aceptado por los ciudadanos globales? ¿Qué país lo gestionaría? ¿Es justo eso? De repente, esta estrategia no parece tan atractiva".
Más de 100 estudios evaluados
Trabajando bajo los auspicios de la Fundación Nacional de Ciencias, los autores pasaron dos años evaluando más de 100 estudios que abordaron las diversas implicaciones de la ingeniería climática y sus efectos esperados sobre los gases de efecto invernadero.
Los autores esperan que su estudio ayude al público y a los responsables de tomar decisiones a invertir en los enfoques con los mayores beneficios y las menores desventajas. En juego, destacan, están el futuro de nuestra producción de alimentos, el clima y la seguridad del agua.
Los colaboradores de Axsen fueron Daniela Cusack, profesor asistente de geografía en la Universidad de California, Facultad de Los Ángeles de Ciencias y Letras; Lauren Hartzell -Nichols, profesor asistente interino en el Programa sobre Valores en la Sociedad  y el Programa sobre el Medio Ambiente en la Universidad de Washington; Katherine Mackey, una investigadora postdoctoral en el Instituto Oceanográfico Woods Hole y el Laboratorio de Biología Marina; Rachael Shwom, profesor asistente en Ecología Humana en la Universidad Rutgers; y Sam White, profesor asistente de Historia Medio Ambiental de la Universidad Estatal de Ohio.

El artículo en inglés:

Climate engineering can’t erase climate change
June 02, 2014 - SFU ONLINE
http://www.sfu.ca/sfunews/stories/2014/climate-engineering-cant-erase-climate-change.html

Estas traducciones tambien estan en Academia.edu:
https://www.academia.edu/7253681/Resumen_Una_evaluacion_interdisciplinaria_de_estrategias_de_ingenieria_climatica_-_Y_articulo_de_Simon_Fraser_University


Artículos relacionados:

No existe alternativa al recorte de CO2 contra el cambio climático

ALICIA RIVERA Madrid 4 JUN 2014 – El País

Thursday, May 29, 2014

Dándole un serio vistazo a los peligros y al potencial de la geoingeniería


La conferencia de Asilomar sobre la geoingeniería había sido promocionada como un evento potencialmente histórico. Lo que surgió, sin embargo, fue unas lecciones inesperadas sobre las posibilidades y peligros de manipular el clima de la Tierra para contrarrestar el calentamiento global.

Por Jeff Goodell - Yale Environment 360 - 01 Abril 2010: ANALISIS

Traducción libre por Oscar A. Escobar May 29, 2014
Gt - FL USA

Al principio, tuve mis dudas. La Conferencia Internacional Asilomar sobre Tecnologías de Intervención Climática, que tuvo lugar la semana pasada en el recinto de la conferencia en Asilomar cerca de Monterey, California, fue promocionada como una reunión "sin precedentes" de 175 científicos, grupos ecologistas, filósofos y expertos en políticas públicas para discutir la gobernanza de la geoingeniería - es decir, la manipulación intencional del clima de la Tierra, a gran escala, para compensar el aumento de las temperaturas. La reunión fue obviamente creada para canalizar el espíritu de la primera conferencia de Asilomar en 1975, durante el cual los biólogos elaboraron directrices voluntarias para ayudar a tranquilizar a la opinión pública de que los organismos modificados genéticamente no se liberarían en el mundo. Asilomar 1.0 es recordado como un hito en la evolución de la ética científica y un punto de inflexión en la aceptación pública de la biotecnología.


Asilomar 2.0 parecía palidecer en comparación. Por un lado, la geoingeniería puede ser una idea que de miedo, pero los peligros no son de ninguna manera  tan inmediatos como la liberación intencional de organismos modificados genéticamente. Como David Keith, director del Grupo de Sistemas Energéticos y Ambientales de la Universidad de Calgary y uno de los pioneros de la investigación en geoingeniería, dijo, "No hay ninguna amenaza de nubes alteradas genéticamente replicándose virulentamente en la atmósfera." Por otra parte, nadie parecía muy seguro de cual era el objetivo de Asilomar 2.0, además de para convencer al resto del mundo de que los geoingenieros no son científicos locos empeñados en destruir lo que queda del sistema climático "natural" de la Tierra. Unos días antes de que comenzara la conferencia, surgieron interrogantes acerca de si la conferencia era en realidad una forma discreta del  organizador de la conferencia, el Fondo de Respuesta Climática, de recaudar fondos para financiar experimentos de geoingeniería (una declaración de última hora de la junta de la FRC (CRF por sus siglas en Inglés) pone fin a la controversia).

"Por un rato, parecía que
Asilomar 2.0 se iba a revertir
a cinco días de luchas internas"

Los primeros días de la conferencia fueron caóticos y desorganizados, ocupados con las familiares discusiones de sobre cómo el término "geoingeniería" agrupa dos ideas muy diferentes sobre cómo enfriar el planeta - tecnologías que reducen la cantidad de luz solar que llega al planeta, así como las tecnologías que reducen la cantidad de dióxido de carbono en la atmósfera. Desde el punto de vista de la gobernanza, nadie está preocupado por las tecnologías que absorben el CO2 de la atmósfera. Son las tecnologías que reducen la cantidad de luz solar que llega al planeta - como abrillantar las nubes y la inyección de partículas de azufre en la estratosfera – las que preocupan a la gente, sobre todo porque se pueden implementar de forma rápida y barata, y porque que tienen un efecto inmediato.

Nada de esto era una novedad para cualquiera que haya pasado algún tiempo pensando en la geoingeniería.  Y  por un rato, parecía que Asilomar 2.0  iba a revertir a cinco días de luchas internas sobre la conveniencia de tratar de renombrar la geoingeniería como "restauración del clima." Pero entonces sucedió algo extraño. En medio del caos, nuevas ideas - y algunas lecciones - emergieron.

Lección número uno: La geoingeniería es una tabula rasa en la mente pública. Como la mayoría de los asistentes, yo estaba muy consciente del hecho de que la geoingeniería es una idea desconocida para muchas personas. Pero yo no había visto datos reales sobre esto. Tampoco había realmente captado las implicaciones de ello.

Una de las presentaciones más iluminadoras de la semana fue la de Anthony Leiserowitz, director del Proyecto de Yale sobre el Cambio Climático, que presentó los resultados de un estudio de larga duración en la percepción pública sobre el calentamiento global. En su más reciente encuesta, él había incluido un par de preguntas acerca de la geoingeniería. Cuando se preguntó: "¿Qué tanto, si es que acaso, ha oído hablar de la geoingeniería como una posible respuesta al cambio climático?", el 74 por ciento de los encuestados dijo que "nada". El 26 por ciento que había oído acerca de la geoingeniería resulto estar tremendamente mal informado - más de la mitad pensaba que se refería a la energía geotérmica. Sólo el 3 por ciento de las personas que habían oído hablar de la geoingeniería estaban informadas correctamente sobre ella. "El público, básicamente, no sabe nada de esto", les dijo Leiserowitz a los asistentes. "Eso es a la vez un gran reto y una gran oportunidad."

Lección dos: Nadie tiene ni una idea clara de cómo resolver las desigualdades inherentes a la geoingeniería. Uno de los comentarios más citados en la conferencia vino de Pablo Suárez, el director asociado de programas con el Centro sobre el Clima de la Cruz Roja / Media Luna Roja, que pregunto durante una sesión plenaria, "¿Quién se come el riesgo?” En la opinión de Suárez, la geoingeniería se trata de cambiar el riesgo del calentamiento global de los países ricos - es decir, aquellos que pueden costearse las tecnologías para manipular el clima – hacia las naciones pobres. Suárez admitió que una manera de resolver esto podría ser el que los países ricos paguen a las naciones pobres por los daños causados​, por ejemplo, cambios en los patrones de precipitación. Pero eso evocaba visiones de agricultores en Bangladesh demandando a geoingenieros chinos por arruinar su cosecha de arroz - una caja de pandora legalista que nadie estaba dispuesto a explorar abiertamente.

"Según una opinión,
 geoingeniería se trata de
cambiar el riesgo del calentamiento global de los
países ricos a los países pobres."

Hubo mucha discusión sobre el papel que el Consejo de Seguridad de la ONU podría desempeñar en la gobernanza del eventual despliegue de tecnologías de geoingeniería, también si un nuevo protocolo debe desarrollarse para gobernar la geoingeniería en virtud de la Convención Marco de Naciones Unidas sobre el Cambio Climático. Algunas personas incluso expusieron una nueva idea: ¿Qué tal un Consejo Mundial de la Geoingeniería? El concepto evocaba visiones de helicópteros negros y del Dr. Maligno, y se abandonó rápidamente – aun así, en privado, algunos expertos en política admitieron que esa podría ser la dirección en la que nos dirigimos.


En público, todos coincidieron en que el clima es algo que le pasa a todo el mundo y, por lo tanto, todos deben tener voz y voto en las decisiones que se toman para cambiarlo deliberadamente. Pero la simple verdad es que nadie tiene muy buena idea sobre cómo lograr eso, sobre todo entre las personas en el mundo en desarrollo, donde el impacto, presumiblemente, sería mayor. Leiserowitz lo dijo mejor: "¿Qué significa el consentimiento informado en un mundo donde más de dos mil millones de personas no son conscientes de que el cambio climático es un problema?”


Lección tres: La pregunta más grande en el horizonte es, "¿Deberían prohibirse los  experimentos de campo?" Prácticamente todo el mundo en la conferencia acordó que la investigación adicional en la geoingeniería es una buena idea. "Tenemos que averiguar lo que funciona y lo que no", argumentó David Keith. No fue sorpresa que el conflicto surgiera cuando la discusión paso hacia si era o no el momento de hacer algunos experimentos de campo en el mundo real. Todo el mundo estuvo de acuerdo en que los experimentos a pequeña escala de "procesos”, como probar dispositivos para rociar aerosoles en la estratosfera, se deben permitir, ya que no hay expectativa de que tales experimentos tengan algún impacto en el clima. Pero ¿qué pasa con los  experimentos de campo sencillos, como intentar rociar partículas sobre una región del Ártico, o abrillantar las nubes sobre una parte del océano? Alan Robock, un científico atmosférico de la Universidad de Rutgers que por largo tiempo ha señalado los riesgos de los experimentos de campo de la geoingeniería, como era previsible argumentó en contra de ello: "El Ártico no puede ser aislado del resto del mundo."

"El conflicto surgió cuando la
discusión se centró en si era
el momento de llevar a cabo
experimentos de campo"

Pero ¿cómo se define la diferencia entre los experimentos a "sub-escala”, con probabilidad a tener poco si es que acaso tienen impacto alguno, con experimentos "grandes”, que de hecho sí podrían tener un impacto? Este es un problema perenne entre los geoingenieros prospectivos. Keith abogó por la importancia de los experimentos de campo como una forma de poner a prueba nuestros conocimientos -, así como la precisión de los modelos climáticos. “Sólo nos enteramos del agujero en la capa de ozono porque salimos e hicimos algunos experimentos", argumentó. "Si hubiésemos dependido completamente en los modelos, es posible que nunca lo hubiéramos encontrado." Desde el punto de vista de los demás, también era una cuestión de urgencia: "No queremos estar modelado por los próximos 20 años, mientras que se derrite el Ártico," me dijo un científico.

La cuestión de las pruebas de campo también jugaba en el tema más amplio de la gobernanza. David Víctor, un profesor de derecho en la Universidad de California, San Diego, argumentó que no puedes establecer una estructura de gobierno viable hasta que no sepas qué tecnologías podrían desplegarse y cuáles son los riesgos. “Y para averiguarlo, puede ser que tengas que hacer algunos experimentos", dijo.

Lección cuatro: Todo es sobre el dinero. ¿Alguien va a hacerse rico con la geoingeniería del planeta? A nadie le gusta hacer esa pregunta de forma explícita, pero es inevitable. Después de todo, si la geoingeniería llega algún día a ser tomada en serio, va a ser la madre de todos los proyectos de ingeniería. ¿Quién debería estar a cargo - y qué papel debería desempeñar la inversión privada?

¿Deben los empresarios tener la posibilidad de lucro con la tecnología diseñada para enfriar el planeta?


Se acordó en general  que para las tecnologías  que absorben-CO2, la inversión privada no era un problema. Las tecnologías de reducción de luz solar, sin embargo, son otra cuestión. Si alguna empresa (o empresario) es capaz de desarrollar una nueva forma de inyectar partículas en la estratosfera que se vuelve indispensable para la supervivencia de la raza humana, bueno, eso le da a esa empresa o persona mucha influencia. "No estoy interesado en venderle mi alma a una empresa que va a controlar la cantidad de luz solar que llega al planeta", dijo Phil Rasch, un modelador climático en el Laboratorio Nacional del Noroeste del Pacífico en el estado de Washington. (Mientras un miembro de la audiencia, bromeaba, "le da un nuevo significado a ciudad empresa.") Granger Morgan, el jefe del departamento de ingeniería y política pública en la Universidad de Carnegie Mellon, sostuvo que la creación de un afán de lucro conduciría inevitablemente a un grupo de presión (lobby) de geoingeniería: "el cabildeo es la última cosa que necesitamos en esto."

MÁS DE YALE e360
Geoingeniería del Planeta: Entrevista con Ken Caldeira
Interferir con el sistema climático de la Tierra para contrarrestar el calentamiento global es un concepto controversial. Pero en una entrevista con Yale Environment 360, el científico climatologo Ken Caldeira habla sobre por qué él cree que el mundo necesita comprender mejor que esquemas de geoingeniería podrían trabajar y cuales son fantasía - o peor.

LEER MÁS


¿Significa eso que la financiación por el gobierno, en los EE.UU. Inicialmente a través de la Fundación Nacional de la Ciencia o una agencia como la Administración Nacional Oceánica y Atmosférica, es la respuesta? Muchos de los asistentes señalaron que la financiación pública tiene sus propios problemas, no menos importante de los cuales es que la burocracia y los obstáculos regulatorios  ralentizarán la investigación y despliegue. En cuanto al Departamento de Defensa de EE.UU. – hay que olvidarse de eso. Para este grupo, esta participación induce pesadillas de un nuevo complejo militar-industrial de geoingeniería. Una solución novedosa: demandar que toda la tecnología utilizada para las tecnologías de reducción de la luz solar permanezca en el dominio público. "El problema no es la inversión privada", sostuvo Keith. "Es la propiedad intelectual libre." Ingeniería climática de código abierto, ¿alguien?

Lección cinco: La confianza lo es todo. A los medios de comunicación les encantan preponderar el ángulo de los geoingenieros arrogantes empeñados en jugar con un sistema que no entienden, pero en Asilomar había muy poca conversación atrevida o imprudente. El completo estado de ánimo de la reunión era sombrío e híper-alerta a los peligros que se avecinan. "El juego entero", señaló David Víctor, "se trata de establecer la credibilidad. "En otras palabras, si el público llega a ver la geoingeniería como, según lo puso uno de los asistentes, "una idea loca tramada por ricos anglosajones para dominar el clima", entonces todos serán merecidamente cubiertos de alquitrán y plumas.

Al final, no salí de Asilomar sintiendo como si hubiera asistido a un acontecimiento histórico. Pero si sentí que puede haber sido testigo del nacimiento de algo nuevo - llámenlo la conciencia del geoingeniero.



Artículo original:

A Hard Look at the Perils and Potential of Geoengineering
By Jeff Goodell – Yale Environment 360
http://e360.yale.edu/feature/a_hard_look_at_the_perils_and_potential_of_geoengineering/2260/

Wednesday, May 21, 2014

What do your newspapers say about geoengineering?

By Oscar A. Escobar
Gt - FL USA


Note: This is the english form of the article "¿Que dicen tus periódicos sobre la geoingeniería?
http://geoengineeringclimateissues.blogspot.com/2014/05/que-dicen-tus-periodicos-sobre-la.html


“Typically, surveys of public opinion find that less than 5 % of respondents claim any substantive knowledge about the issue, although a somewhat higher number are able to offer a broadly accurate definition of the term ‘climate engineering’ (Mercer et al. 2011).”
From: Like artificial trees? The effect of framing by natural analogy on public perceptions of geoengineeringAdam Corner & Nick Pidgeon (May 2014) [1]
                                     
Although there is a very short and incomplete definition for ‘geoingeniería’ or ‘ingenieria climatica’ in Wikipedia http://es.wikipedia.org/wiki/Geoingenieria  (written by me) the term ‘geoingenieria’ has no meaning in the dictionary from the ‘Real Academia Española’ (RAE)

A search in (RAE) results in a message saying that the word is not in the dicctionary.
.
Given that the concept itself has no official ‘word’ and much less a definition in the spanish language I would think that for spanish speaking societies the number of people with ‘any substantive knowledge about the issue’ would be far below 5%.

Searches on Google ngram viewer for the term ‘geoingenieria’ and the term ‘captura de carbono’ also yield zero results.                  

These terms (‘geoingenieria’ and ‘captura de carbono’) and their concepts may appear in some articles, studies or books. But searches on various Spanish speaking written newspapers in the majority of cases yield zero returns; with very few exceptions e.g. El País (Spain) [2], ABC (Spain) [3], El Universal (Mexico) [4].

It is notable that carbon capture and sequestration (captura y almacenamiento de carbono) technologies are being developed in some Ibero-American countries e.g. Mexico, [5] Brazil [6] and in Spain [7] as well, but the term geoengineering (geoingenieria) is being carefully avoided, no doubt for fear of negative backlash, and aided by the lack of official language concepts.

But to be fair, here in the United States, ‘news purveyors’ of high profile e.g. The Drudge Report also seem to be involved in a concerted effort to not-to-inform the public.

Over the past two years repeated searches on the Drudge Report web site with the term ‘geoengineering’ netted zero results. This continues to be the case as of today May 21, 2014

Searching for the term ‘geo engineering’ yields 2 results:

STUDY: Geo-engineering solutions for 'global warming' ineffective... ^
From the February 25, 2014 19:20:47 GMT edition of the Drudge Report.

STUDY: Geo-engineering proposals for 'global warming' ineffective... ^
From the February 25, 2014 18:20:28 GMT edition of the Drudge Report.

Alas, following the links, a message indicating that the page does not exist or it is unavailable.

Searching for ‘carbon capture’, ‘carbon sequestration, ‘beccs’, ‘biochar’or ‘afforestation’ also yields zero results.

A search for ‘biofuel’ yielded 14 results dating from 2007 to 2014.

16:20 pm May 21, 2014 Update- 

Searching for 'climate engineering' nets 1 result with an active link:

'Human Engineering' Could Combat Climate Change... ^
From the March 12, 2012 21:20:35 GMT edition of the Drudge Report.

End of update. 


Efforts like these by the fossil fuel industry, or entities supportive of it and from its detractors as well, to keep the public ‘un-informed’ reek of manipulation.

This should be unacceptable.

It is for that reason that efforts to not only ‘open up’ the global-public’s participation in the geoengineering debate, but to also intelligently inform that debate should be welcomed, regardless of how averse ‘we’ may feel towards the issue.

Thus, even though no single technology has been scientifically proven to be safe and feasible, climate engineering has moved from the realm of science fiction to concrete political, academic and economic considerations.“Climate engineering thus warrants attention from Pacific island and other states for two reasons. First, given the possible severity of climate impacts, a sober and serious consideration is needed regarding the potentials, limits and risks of climate engineering. Second – and perhaps more importantly to be informed and able to make sound decisions should the Pacific island states be approached by governments, business people, activists, or others (including scientists in search of research platforms) with regard to the topic.”
Workshop Report - Perspectives on Climate Engineering from Pacific Small Island States [9]

So, let us hope for the vigorous, civil and well informed ‘climate geoengineering’ debate!
And in all languages!

Conscious of my limitations as a ‘lay person’ but hoping to contribute to the debate in a positive way, I have written this post, prompted by a general invitation that appears in the Washington Geoengineering Consortium web site [8] for articles and publications, in spanish, on the subject of ‘geoingenieria’.

An invitation that is certainly welcomed and accepted!

Below the references I have included translations to some articles and links to other sites, as well as a few of my own perspectives from the blog.

Best regards,

Oscar Escobar
A #Geoengineering #Climate Issues Blog – Geoingeniería (A biligual blog)

References
[1] Like artificial trees? The effect of framing by natural analogy on public perceptions of geoengineering
[2] ‘geoingeniería’ search @ Diario el País (Spain) 
http://www.prensaescrita.com/adiario.php?codigo=S&pagina=http://www.elpais.com
[3] ‘geoingeniería’ search @ ABC.es (Spain)
[4] ‘geoingeniería’ search @ El Universal (Mexico)
[5] Proteak – Captura de Carbono – (Aforestation - Mexico)
[6] Petrobras Lula Oil Field CCS Project (CO2 enhanced oil recovery Brasil)
[7] Fundación Ciudad de la Energía (CIUDEN) (“is the main public sponsor in Spain of capture, transport and geological storage of CO2 technologies”)
[8] EL CONSORCIO DE GEOINGENIERÍA DE WASHINGTON (SPANISH)
[9] Perspectives on Climate Engineering from Pacific Small Island States
Beyerl, K., Maas, A. ( Eds. ) (2014): Perspectives on Climate Engineering from Pacific Small Island States. - IASS Working Paper, April 2014, 10.2312/iass.2014.008.




Geoingeniería : Un breve historial (Traducción libre de artículo en la revista Foreingn Policy - Septiembre - Octubre 2013) http://geoengineeringclimateissues.blogspot.com/2013/09/geoingenieria-un-breve-historial.html

20 razones por las que la geoingeniería podría ser una mala idea (Traducción libre) http://geoengineeringclimateissues.blogspot.com/2013/09/20-razones-por-las-que-la-geoingenieria.html

Cruz Roja/Media Luna Roja, Centro sobre el Clima. Geoingeniería: encontrar una voz para los trabajadores humanitarios (Traducción libre) http://geoengineeringclimateissues.blogspot.com/2013/08/cruz-rojamedia-luna-rojacentro-sobre-el.html


Profecías auto realizadas de la Geoingeniería y otros argumentos caducos en contra de su investigación (Opinion)

En detrimento de los estudios de geoingeniería: Apocalipsis-mo vs. Paliativismo (Opinion) http://geoengineeringclimateissues.blogspot.com/2013/08/en-detrimento-de-los-estudios-de.html

Una alternativa más segura que la Gestión de Radiación Solar ( Geoingeniería) para combatir el Cambio Climático-Calentamiento Global http://geoengineeringclimateissues.blogspot.com/2013/03/una-alternativa-mas-segura-que-la.html


GEOINGENIERIA DEL CLIMA
TEMAS SOBRE LA INGENIERIA CLIMATICA - MODIFICACION DEL CLIMA (Weekly twitter fed newspaper)

MIT Technology Review (Español) (occasional geoengineering articles, carbon capture, bioenergy, etc.)

Environment 360 (Español) (occasional geoengineering articles, carbon capture, bioenergy, etc.)

RAM 3ª Etapa (Magazine for the meteorology aficionado) (occasional articles)
http://www.tiempo.com/ram/search/?cx=002828392868715987369%3Aradjv0kcudy&cof=FORID%3A11&ie=UTF-8&q=geoingenieria&sa=Buscar&siteurl=www.tiempo.com%2Fram%2F&ref=geoengineeringclimateissues.blogspot.com%2F2013%2F03%2Fgeoengineering-climate-making-of-modern.html&ss=531j142965j3

¿Que dicen tus periódicos sobre la geoingeniería?

Por Oscar A. Escobar
Gt - FL USA
Lakeland, FL – Mayo 21, 2014. Editado Mayo 22, 2014

"Por lo general, las encuestas de opinión pública consideran que menos del 5 % de los encuestados afirma tener algún conocimiento sustantivo sobre el tema, aunque un número algo superior son capaces de ofrecer una definición generalmente precisa del término "ingeniería climática" (Mercer et al. 2011)."
Fuente: ¿Como árboles artificiales? El efecto de enmarcación por analogía natural, en las percepciones públicas de la geoingeniería
Adam Corner & Nick Pidgeon (mayo de 2014) [1]
                                               
Aunque existe una definición muy corta e incompleta de la 'geoingeniería' o 'ingeniería climática' en Wikipedia http://es.wikipedia.org/wiki/Geoingenieria  (escrita por mí) el término ‘geoingeniería’ no tiene significado en el diccionario de la Real Academia Española (RAE).

Una búsqueda en el diccionario (RAE) por el término ‘geoingeniería’ dice que la palabra no está en el diccionario.

Teniendo en cuenta que el concepto en sí no tiene "palabra" oficial y mucho menos una definición en el idioma Español es fácil imaginarse que en las sociedades de lengua española el número de personas con 'algún conocimiento sustantivo sobre el tema’ sería mucho menor del 5 %.

Y  búsquedas en Google ngram viewer por el término 'geoingeniería' y el término 'Captura de Carbono' tampoco dieron ningún resultado                                          

Estos términos ('geoingeniería’ y ‘Captura de Carbono’) y sus conceptos pueden aparecer en algunos artículos, estudios o libros en español. Pero las búsquedas en varios diarios escritos en la lengua española en la mayoría de los casos da cero resultados; con muy pocas excepciones, como en, El País (España) [2], ABC (España) [3], El Universal (México) [4].

Hay que destacar que tecnologías de captura y almacenamiento de carbono (Carbon Capture and Secuestration) se están desarrollando en algunos países de Iberoamérica, como en México, [5] Brasil [6] y en la misma España [7], pero se evita cuidadosamente el término ‘geoingeniería’, sin duda por temor a  reacciones negativas, y ayudados por la falta de conceptos oficiales.

Pero para ser justo hay que decir que aquí en los Estados Unidos, algunos ‘proveedores de noticias’ de alto perfil por ejemplo, The Drudge Report también parecen estar involucrados en un esfuerzo enfocado para no informar al público.

Durante los últimos dos años repetidas búsquedas en el sitio web de Drudge Report con el término 'geoingeniería' han dan cero resultados. Este sigue siendo el caso hasta hoy 21 de mayo 2014.

La búsqueda usando el término 'geo ingeniería' dio dos resultados:

STUDY: Geo-engineering solutions for 'global warming' ineffective... ^
From the February 25, 2014 19:20:47 GMT edition of the Drudge Report.
STUDY: Geo-engineering proposals for 'global warming' ineffective... ^
From the February 25, 2014 18:20:28 GMT edition of the Drudge Report.

Por desgracia, al seguir los enlaces aparece un mensaje diciendo que la página no existe o no está disponible.

La búsqueda con los términos en inglés para la 'captura y almacenamiento de carbono, 'beccs', ‘aforestación’ y ‘biochar' también rinde cero resultados.

Una búsqueda con  la palabra ‘biofuel’ (biocombustible) produjo 14 resultados que datan del 2007 al 2014.

*16:28 pm Actualización Mayo 21, 2014

Una búsqueda con el término ‘climate engineering’ (ingeniería climática) da un resultado con el enlace activo:

'Human Engineering' Could Combat Climate Change... ^
From the March 12, 2012 21:20:35 GMT edition of the Drudge Report.

Final de la actualización.

Esfuerzos como estos por parte de la industria de los combustibles fósiles, de entidades que la apoyan, así mismo como de sus detractores, para mantener al público desinformado, apestan a manipulación.

Esto debería ser inaceptable.

Es por esa razón que los esfuerzos, no sólo para "abrir" la participación a nivel mundial del público en el debate de geoingeniería, sino que también para informar de forma inteligente ese debate, deben ser bienvenidos, independientemente de lo reacios que nos podamos sentir hacia el tema.


Por lo tanto, a pesar de que ninguna tecnología se haya probado científicamente que sea segura y factible, la ingeniería climática ha llegado desde el reino de la ciencia ficción hasta las consideraciones políticas, académicas y económicas concretas. “La ingeniería climática por lo tanto merece la atención de las Islas del Pacífico y otros estados por dos razones. En primer lugar, dada la posible gravedad de los impactos climáticos, es necesario un examen sobrio y serio con respecto a las potencialidades, límites y riesgos de la ingeniería climática. En segundo lugar - y tal vez más importante – para estar informados y ser capaces de tomar decisiones acertadas si los Estados Insulares del Pacífico son abordados por gobiernos, empresarios, activistas, u otros (incluyendo científicos en la búsqueda de plataformas de investigación) en lo que respecta al tema".
Informe del Taller - Perspectivas sobre Ingeniería del Clima de los Pequeños Estados Insulares del Pacífico [9]

Por lo tanto, esperemos que el debate sobre la "geoingeniería climática" sea vigoroso, civil y ¡bien informado!
¡Y en todos los idiomas!

Consciente de mis limitaciones como 'laico' o ‘profano’ pero con la esperanza de contribuir al debate en forma positiva, he escrito este post en respuesta a una invitación general que aparece en el sitio web del Consorcio de Geoingeniería de Washington [8] para contribuir con artículos y publicaciones, en español, sobre el tema de la 'geoingeniería'.

¡Una invitación que sin duda se agradece y se acepta!

Debajo de las referencias he incluido algunos artículos y enlaces, así como algunos de mis propios puntos de vista en el blog.

Saludos cordiales,

Oscar Escobar
A #Geoengineering #Climate Issues Blog – Geoingeniería (A biligual blog)

Referencias

[1] Like artificial trees? The effect of framing by natural analogy on public perceptions of geoengineering

[2] ‘geoingeniería’ search @ Diario el País (Spain) 
http://www.prensaescrita.com/adiario.php?codigo=S&pagina=http://www.elpais.com

[3] ‘geoingeniería’ search @ ABC.es (Spain)

[4] ‘geoingeniería’ search @ El Universal (Mexico)

[5] Proteak – Captura de Carbono – (Aforestation - Mexico)

[6] Petrobras Lula Oil Field CCS Project (CO2 enhanced oil recovery Brasil)

[7] Fundación Ciudad de la Energía (CIUDEN) (“is the main public sponsor in Spain of capture, transport and geological storage of CO2 technologies”)

[8] EL CONSORCIO DE GEOINGENIERÍA DE WASHINGTON (SPANISH)

[9] Perspectives on Climate Engineering from Pacific Small Island States
Beyerl, K., Maas, A. ( Eds. ) (2014): Perspectives on Climate Engineering from Pacific Small Island States. - IASS Working Paper, April 2014, 10.2312/iass.2014.008.


 Otros enlaces:

Geoingeniería: Un breve historial
(Traducción libre de artículo en la revista Foreingn Policy - Septiembre - Octubre 2013) http://geoengineeringclimateissues.blogspot.com/2013/09/geoingenieria-un-breve-historial.html

20 razones por las que la geoingeniería podría ser una mala idea
(Traducción libre) 

Cruz Roja/Media Luna Roja, Centro sobre el Clima. Geoingeniería: encontrar una voz para los trabajadores humanitarios 
(Traducción libre) 

Profecías auto realizadas de la Geoingeniería y otros argumentos caducos en contra de su investigación (Opinión)

En detrimento de los estudios de geoingeniería: Apocalipsis-mo vs. Paliativismo (Opinión)

Una alternativa más segura que la Gestión de Radiación Solar ( Geoingeniería) para combatir el Cambio Climático-Calentamiento Global (Opinión)


GEOINGENIERIA DEL CLIMA
TEMAS SOBRE LA INGENIERIA CLIMATICA - MODIFICACION DEL CLIMA (Weekly twitter fed newspaper)

MIT Technology Review (Español) (occasional geoengineering articles, carbon capture, bioenergy, etc.)

Environment 360 (Español) (occasional geoengineering articles, carbon capture, bioenergy, etc.)

RAM 3ª Etapa (Magazine for the meteorology aficionado) (occasional articles)


 

Tuesday, May 6, 2014

Algunos titulares del mes de Mayo - Traducidos - Some headlines from the month of May

Algunos de estos artículos y estudios no están enfocados directamente sobre la geoingeniería, pero hacen mención de esta o pueden tener alguna relación.

Some of these articles and studies are not focused directly on geoengineering, but they mention it or may be somehow related.

OE.

POR QUÉ NO DEBEMOS diseñar/construir UN TERMOSTATO GLOBAL
WHY WE SHOULD NOT ENGINEER A GLOBAL THERMOSTAT

¿Cuál es el partido anti-ciencia? ¿Y cuál sera en el futuro?
Who's the anti-science party? And who will be?

¿Cuál es el equivalente liberal del negacionismo del cambio climático?
What’s the liberal equivalent of climate denial?

Ciencias de la Atmósfera reales en Stargate: Atlantis
Real Atmospheric Science in Stargate: Atlantis

#egu2014
GDB2 - La Geoingeniería del clima: ¿será el camino a seguir?
Geoengineering the climate: the way forward?

Mi pregunta a #egu2014:
¿Cómo afectan a la hidrología mundial las emisiones actuales de aerosoles de la marina mercante y la aviación sobre el hemisferio norte versus la Gerencia de la Radiación Solar GRS (Geoingeniería)?
(Ver imagen abajo)
How do current shipping & aviation aerosols emission over N. hemisphere affect global hydrology vs SRM?



Científicos desarrollan técnica de retroalimentación para gestionar las incertidumbres en la geoingeniería solar
Scientists develop feedback technique to manage uncertainties in solar

Combustible 'Solar' para aviación extraído del aire
‘Solar’ jet fuel made out of thin air

Respondiendo a  las reconvenciones Climáticas - Alan Robock en Reality Asserts Itself
Answering Counter Climate Claims - Alan Robock on Reality Asserts Itself

¿Puede alguien detener al hombre que intentará cualquier cosa para acabar con el cambio climático?
Can Anyone Stop the Man Who Will Try Just About Anything to Put an End to Climate Change?

¿Algún día… controlaremos las condiciones del tiempo?
Will we ever… control the #weather?

WIL BURNS - CCS bioenergía y disyuntivas potenciales con la producción de alimentos
WIL BURNS – BIOENERGY CCS AND POTENTIAL TRADEOFFS WITH FOOD PRODUCTION

Mark Lawrence: "Una Introducción a la Ingeniería Climática"
Mark Lawrence: "An Introduction to Climate Engineering"

Stefan Schafer: "¿De qué se trata la CEC14 (Conferencia en Ingeniería Climática 2014)?"
Stefan Schäfer: "What is CEC14 all about?"

Shell se une a proyecto de captura de carbono
Shell Joins #Carbon Capture Project

Dos centrales eléctricas que atrapan el carbono ofrecen esperanza de carbón más limpio
Two Carbon-Trapping Plants Offer Hope of Cleaner Coal

El Japón quiere construir una granja de energía solar basada en el espacio
Japan wants to build a space-based solar energy farm

La Energía Solar Está Calentando la Tecnología – Incluso Cuando Baja el Sol
Solar Energy Is Heating Up Tech -- Even When the Sun Goes Down

El Departamento de Energía (EEUU) Apuesta $10 Millones En Mayor y Mejor Energía de las Olas del Mar
Energy Department Bets $10 Million On Bigger, Better Wave Energy

Plancton y azufre en la corriente de Benguela
Plankton and Sulfur in the Benguela Current

TechConnect Mundial 2014 (Expo) – Captura de Carbono
TechConnect World 2014 - Carbon Capture

Convocatoria de resúmenes y otras contribuciones
Call for Abstracts and Other Contributions

¿Tiene el cielo un filtro defectuoso?
Does the Sky Have a Faulty Filter?

Derechos exclusivos para Salvar el Planeta: el patentado de invenciones de geoingeniería
Exclusive Rights to Saving the Planet: The Patenting of Geoengineering Inventions

¿Saber o no saber? Una nota sobre la Ignorancia como un recurso retórico en los debates de geoingeniería
To Know or Not to Know? A Note on Ignorance as a Rhetorical Resource in Geoengineering Debates

Climas de sospecha: las narrativas de conspiración 'chemtrails' y la política internacional sobre la geoingeniería
Climates of suspicion: ‘chemtrail’ conspiracy narratives and the international politics of Geoengineering

Un caso en contra de la Ingeniería del Clima
A Case Against Climate Engineering

LA INGENIERÍA DEL CLIMA Y LOS PEQUEÑOS ESTADOS INSULARES: ¿PANACEA O CATASTROFE? (ARTÍCULO DE OPINIÓN)
CLIMATE ENGINEERING AND SMALL ISLAND STATES: PANACEA OR CATASTROPHE? (OPINION ARTICLE)

El caso de los Conservadores por las Políticas Climáticas
Y el por qué la resiliencia adaptativa es un camino a seguir
The Conservative Case for Climate Policy
And Why Adaptive Resiliency Is One Way Forward

Las creencias defectuosas causa-raíz de la crisis climática
Flawed beliefs root cause of climate crisis

El suelo como almacén de carbono: ¿Nueva arma en la Lucha Climática?
Soil as Carbon Storehouse: New Weapon in Climate Fight?

LA INGENIERÍA DEL CLIMA, EL ARTE Y LA PARTICIPACIÓN PÚBLICA
CLIMATE ENGINEERING, ART, AND PUBLIC ENGAGEMENT

Wednesday, April 16, 2014

Chapter 3.3.7 - Ethics, and justice - and Chapter 6.9 - CCS, SRM and other geoengineering options including environmental risks (Excerpted from IPCC AR5 WGIII)

From:

ipcc
Intergovernmental Panel on Climate Change
 Working Group III – Mitigation of Climate Change 


Chapter 3

Social, Economic and Ethical
Concepts and Methods 
--------------
3.3.7    Geoengineering, ethics, and justice

Geoengineering (also known as climate engineering [CE]), is largescale technical intervention in the climate system that aims to cancel some of the effects of GHG emissions (for more details see WGI 6.5 and WGIII 6.9). Geoengineering represents a third kind of response to climate change, besides mitigation and adaptation. Various options for geoengineering have been proposed, including different types of solar radiation management (SRM) and carbon dioxide removal (CDR). This section reviews the major moral arguments for and against geoengineering technologies (for surveys see Robock, 2008; Corner and Pidgeon, 2010; Gardiner, 2010; Ott, 2010; Betz and Cacean, 2012; Preston, 2013). These moral arguments do not apply equally to all proposed geoengineering methods and have to be assessed on a casespecific basis.7


Three lines of argument support the view that geoengineering technologies might be desirable to deploy at some point in the future. First, that humanity could end up in a situation where deploying geoengineering, particularly SRM, appears as a lesser evil than unmitigated climate change (Crutzen, 2006; Gardiner, 2010; Keith et al., 2010; Svoboda, 2012a; Betz, 2012). Second, that geoengineering could be a more costeffective response to climate change than mitigation or adaptation (Barrett, 2008). Such efficiency arguments have been criticized in the ethical literature for neglecting issues such as sideeffects, uncertainties, or fairness (Gardiner, 2010, 2011; Buck, 2012). Third, that some aggressive climate stabilization targets cannot be achieved through mitigation measures alone and thus must be complemented by either CDR or SRM (Greene et al., 2010; Sandler, 2012).


Geoengineering technologies face several distinct sets of objections. Some authors have stressed the substantial uncertainties of largescale deployment (for overviews of geoengineering risks see also Schneider (2008) and Sardemann and Grunwald (2010)), while others have argued that some intended and unintended effects of both CDR and SRM could be irreversible (Jamieson, 1996) and that some current uncertainties are unresolvable (Bunzl, 2009). Furthermore, it has been pointed out that geoengineering could make the situation worse rather than better (Hegerl and Solomon, 2009; Fleming, 2010; Hamilton, 2013) and that several technologies lack a viable exit option: SRM in particular would have to be maintained as long as GHG concentrations remain elevated (The Royal Society, 2009). 


Arguments against geoengineering on the basis of fairness and justice deal with the intragenerational and intergenerational distributional effects. SRM schemes could aggravate some inequalities if, as expected, they modify regional precipitation and temperature patterns with unequal social impacts (Bunzl, 2008; The Royal Society, 2009; Svoboda et al., 2011; Preston, 2012). Furthermore, some CDR methods would require largescale land transformations, potentially


7 While the literature typically associates some arguments with particular types of methods (e.g., the termination problem with SRM), it is not clear that there are two groups of moral arguments: those applicable to all SRM methods on the one side and those applicable to all CDR methods on the other side. In other words, the moral assessment hinges on aspects of geoengineering that are not connected to the distinction between SRM and CDR.
________________________________________________________________________________

competing with agricultural landuse, with uncertain distributive consequences. Other arguments against geoengineering deal with issues including the geopolitics of SRM, such as international conflicts that may arise from the ability to control the global thermostat” (e.g., Schelling, 1996; Hulme, 2009), ethics (Hale and Grundy, 2009; Preston, 2011; Hale and Dilling, 2011; Svoboda, 2012b; Hale, 2012b), and a critical assessment of technology and modern ivilization in general (Fleming, 2010; Scott, 2012).


One of the most prominent arguments against geoengineering suggests that geoengineering research activities might hamper mitigation efforts (e.g., Jamieson, 1996; Keith, 2000; Gardiner,2010), which presumes that geoengineering should not be considered an acceptable substitute for mitigation. The central idea in that research increases the prospect of geoengineering being regarded as a serious alternative to emission reduction (for a discussion of different versions of this argument see Hale, 2012a; Hourdequin, 2012). Other authors have argued, based on historical evidence and analogies to other technologies, that geoengineering research might make deployment inevitable (Jamieson, 1996; Bunzl, 2009), or that largescale field tests could amount to fullfledged deployment (Robock et al., 2010). It has also been argued that geoengineering would constitute an unjust imposition of risks on future generations, because the underlying problem would not be solved but only counteracted with risky technologies (Gardiner, 2010; Ott, 2012; Smith, 2012). The latter argument is particularly relevant to SRM technologies that would not affect greenhouse gas concentrations, but it would also apply to some CDR methods, as there may be issues of longterm safety and capacity of storage.


Arguments in favour of research on geoengineering point out that research does not necessarily prepare for future deployment, but can, on the contrary, uncover major flaws in proposed schemes, avoid premature CE deployment, and eventually foster mitigation efforts (e.g., Keith et al., 2010). Another justification for Research and Development (R&D) is that it is required to help decisionmakers take informed decisions (Leisner and MüllerKlieser, 2010).




Chapter 6  
Assessing Transformation Pathways
--------
6.9   Carbon and radiation management and other geo-engineering options including environmental risks

Some scientists have argued that it might be useful to consider, in addition to mitigation and adaptation measures, various intentional interventions into the climate system as part of a broader climate policy strategy (Keith, 2000; Crutzen, 2006). Such technologies have often been grouped under the blanket term ‘geoengineering’ or, alternatively, ‘climate engineering’(Keith, 2000; Vaughan and Lenton, 2011). Calls for research into these technologies have increased in recent years (Caldeira and Keith, 2010; Science and Technology Committee, 2010), and several assessments have been conducted (Royal Society, 2009; Edenhofer et al., 2011; Ginzky et al., 2011; Rickels et al., 2011). Two categories of geoengineering are generally distinguished. Removal of GHGs, in particular carbon dioxide (termed ‘carbon dioxide removal’ or CDR, would reduce atmospheric GHG concentrations. The boundary between some mitigation and some CDR methods is not always clear (Boucher et al., 2011, 2013). ‘Solar radiation management’ or SRM technologies aim to increase the reflection of sunlight to cool the planet and do not fall within the usual definitions of mitigation and adaptation. Within each of these categories, there is a wide range of techniques that are addressed in more detail in Sections 6.5 and 7.7 of the WG I report. 


Many geoengineering technologies are presently only hypothetical. Whether or not they could actually contribute to the avoidance of future climate change impacts is not clear (Blackstock et al., 2009; Royal Society, 2009). Beyond open questions regarding environmental effects and technological feasibility, questions have been raised about the socio-political dimensions of geoengineering and its potential implications for climate politics (Barrett, 2008; Royal Society, 2009; Rickels et al., 2011). In the general discussion, geoengineering has been framed in a number of ways (Nerlich and Jaspal, 2012; Macnaghten and Szerszynski, 2013; Luokkanen et al., 2013; Scholte et al., 2013), for instance, as a last resort in case of a climate emergency (Blackstock et al., 2009; McCusker et al., 2012), or as a way to buy time for implementing conventional mitigation (Wigley, 2006; Institution of Mechanical Engineers, 2009; MacCracken, 2009). Most assessments agree that geoengineering technologies should not be treated as a replacement for conventional mitigation and adaptation due to the high costs involved for some techniques, particularly most CDR methods, and the potential risks, or pervasive uncertainties involved with nearly all techniques (Royal Society, 2009; Rickels et al., 2011). The potential role of geoengineering as a viable component of climate policy is yet to be determined, and it has been argued that geoengineering could become a distraction from urgent mitigation and adaptation measures (Lin; Preston, 2013).

 
6.9.1    Carbon dioxide removal


6.9.1.1    Proposed carbon dioxide removal methods and characteristics


Proposed CDR methods involve removing CO2 from the atmosphere and storing the carbon in land, ocean, or geological reservoirs. These methods vary greatly in their estimated costs, risks to humans and the environment, potential scalability, and notably in the depth of research about their potential and risks. Some techniques that fall within the definition of CDR are also regarded as mitigation measures such as afforestation and BECCS (see Glossary). The term ‘negative emissions technologies’ can be used as an alternative to CDR (McGlashan et al., 2012; McLaren, 2012; Tavoni and Socolow, 2013).


The WG I report (Section 6.5.1) provides an extensive but not exhaustive list of CDR techniques (WG I Table 6.14). Here only techniques that feature more prominently in the literature are covered. This includes (1) increased land carbon sequestration by reforestation and afforestation, soil carbon management, or biochar (see WG III Chapter 11); (2) increased ocean carbon sequestration by ocean fertilization; (3) increased weathering through the application of ground silicates to soils or the ocean; and (4) chemical or biological capture with geological storage by BECCS or direct air capture (DAC). CDR techniques can be categorized in alternative ways. For example, they can be categorized (1) as industrial technologies versus ecosystem manipulation; (2) by the pathway for carbon dioxide capture (e.g. McLaren, 2012; Caldeira et al., 2013); (3) by the fate of the stored carbon (Stephens and Keith, 2008); and (4) by the scale of implementation (Boucher et al., 2013). Removal of other GHGs, e.g., CH4 and N2O, have also been proposed (Boucher and Folberth, 2010; de_Richter and Caillol, 2011; Stolaroff et al., 2012). 


All CDR techniques have a similar slow impact on rates of warming as mitigation measures (van Vuuren and Stehfest, 2013) (see WG I Section 6.5.1). An atmospheric ‘rebound effect’ (see WG I Glossary) dictates that CDR requires roughly twice as much CO2 removed from the atmosphere for any desired  net reduction in atmospheric CO2 concentration, as some CO2 will be returned from the natural carbon sinks (Lenton and Vaughan, 2009; Matthews, 2010). Permanence of the storage reservoir is a key consideration for CDR efficacy. Permanent (larger than tens of thousands of years) could be geological reservoirs while nonpermanent reservoirs include oceans and land (the latter could, among others, be affected by the magnitude of future climate change) (see WG I Section 6.5.1). Storage capacity estimates suggest geological reservoirs could store several thousand GtC; the oceans a few thousand GtC in the long term, and the land may have the potential to store the equivalent to historical landuse loss of 180 ± 80 GtC (also see Table 6.15 of WG I)(Metz et al., 2005; House et al., 2006; Orr, 2009; Matthews, 2010). 


Ocean fertilization field experiments show no consensus on the efficacy of iron fertilization (Boyd et al., 2007; Smetacek et al., 2012). Modelling studies estimate between 15 ppm and less than 100 ppm drawdown of CO2 from the atmosphere over 100 years (Zeebe and Archer, 2005; Cao and Caldeira, 2010) while simulations of mechanical upwelling suggest 0.9 Gt/yr (Oschlies et al., 2010). The latter technique has not been field tested. There are a number of possible risks including downstream decrease in productivity, expanded regions of lowoxygen concentration, and increased N2O emissions (See WG I Section 6.5.3.2) (low confidence). Given the uncertainties surrounding effectiveness and impacts, this CDR technique is at a research phase with no active commercial ventures. Furthermore, current international governance states that marine geoengineering including ocean fertilization is to be regulated under amendments to the London Convention/London Protocol on the Prevention of Marine Pollution by Dumping of Wastes and Other Matter, only allowing legitimate scientific research (Güssow et al., 2010; International Maritime Organization, 2013).


Enhanced weathering on land using silicate minerals mined, crushed, transported, and spread on soils has been estimated to have a potential capacity, in an idealized study, of 1 GtC/yr (Köhler et al., 2010). Oceanbased weathering CDR methods include use of carbonate or silicate minerals processed or added directly to the ocean (see WG I Section 6.5.2.3). All of these measures involve a notable energy demand through mining, crushing, and transporting bulk materials. Preliminary hypothetical cost estimates are in the order of 23-66 USD/tCO2 (Rau and Caldeira, 1999; Rau et al., 2007) for land and 51-64 USD/tCO2 for ocean methods (McLaren, 2012). The confidence level on the carbon cycle impacts of enhanced weathering is low (WG I Section 6.5.3.3). 


The use of CCS technologies (Metz et al., 2005) with biomass energy also creates a carbon sink (Azar et al., 2006; Gough and Upham, 2011). The BECCS is included in the RCP 2.6 (van Vuuren et al., 2007, 2011b) and a wide range of scenarios reaching similar and higher concentration goals. From a technical perspective, BECCS is very similar to a combination of other techniques that are part of the mitigation portfolio: the production of bioenergy and CCS for fossil fuels. Estimates of the global technical potential for BECCS vary greatly ranging from 3 to more than 10 GtCO2/yr (Koornneef et al., 2012; McLaren, 2012; van Vuuren et al., 2013), while initial cost estimates also vary greatly from around 60 to 250 USD/tCO2 (McGlashan et al., 2012; McLaren, 2012). Important limiting factors for BECCS include land availability, a sustainable supply of biomass and storage capacity (Gough and Upham, 2011; McLaren, 2012). There is also a potential issue of competition for biomass under bioenergydependent mitigation pathways. Direct air capture uses a sorbent to capture CO2 from the atmosphere and the longterm storage of the captured CO2 in geological reservoirs (GAO, 2011; McGlashan et al., 2012; McLaren, 2012). There are a number of proposed capture methods including adsorption of CO2 using amines in a solid form and the use of wet scrubbing systems based on calcium or sodium cycling. Current research efforts focus on capture methodologies (Keith et al., 2006; Baciocchi et al., 2006; Lackner, 2009; Eisenberger et al., 2009; Socolow et al., 2011) with storage technologies assumed to be the same as CCS (Metz et al, 2005). A U.S. Government Accountability Office (GAO) (2011) technology assessment concluded that all DAC methods were currently immature. A review of initial hypothetical cost estimates, summarizes 40-300 USD/tCO2 for supported amines and 165-600 USD/tCO2 for sodium or calcium scrubbers (McLaren, 2012) reflecting an ongoing debate across very limited literature. Carbon dioxide captured through CCS, BECCS, and DAC are all intended to use the same storage reservoirs (in particular deep geologic reservoirs), potentially limiting their combined use under a transition pathway. 


6.9.1.2    Role of carbon dioxide removal in the context of transformation pathways


Two of the CDR techniques listed above, BECCS and afforestation, are already evaluated in the current integrated models. For concentration goals on the order of 430-530 ppm CO2eq by 2100, BECCS forms an essential component of the response strategy for climate change in the majority of scenarios in the literature, particularly in the context of concentration overshoot. As discussed in Section 6.2.2, BECCS offers additional mitigation potential, but also an option to delay some of the drastic mitigation action that would need to happen to reach lower GHGconcentration goals by the second half of the century.


In scenarios aiming at such lowconcentration levels, BECCS is usually competitive with conventional mitigation technologies, but only after these have been deployed at very large scale (see Azar et al., 2010; Tavoni and Socolow, 2013). At same time, BECCS applications do not feature in less ambitious mitigation pathways (van Vuuren et al., 2011a). Key implications of the use of BECCS in transition pathways is that emission reduction decisions are directly related to expected availability and deployment of BECCS in the second half of the century and that scenarios might temporarily overshoot temperature or concentration goals. 


The vast majority of scenarios in the literature show CO2 emissions of LUC become negative in the second half of the century even in the absence of mitigation policy (see Section 6.3.2). This is a consequence of demographic trends and assumptions on landuse policy. Addition afforestation as part of mitigation policy is included in a smaller set of models. In these models, afforestation measures increase for lowerconcentration categories, potentially leading to net uptake of carbon of around 10 GtCO2/yr.


There are broader discussions in the literature regarding the technological challenges and potential risks of largescale BECCS deployment. The potential role of BECCS will be influenced by the sustainable supply of largescale biomass feedstock and feasibility of capture, transport, and longterm underground storage of CO2 as well as the perceptions of these issues. The use of BECCS faces large challenges in financing, and currently no such plants have been built and tested at scale. Integrated modeling studies have therefore explored the sensitivities regarding the availability of BECCS in the technology portfolio by limiting bioenergy supply or CCS storage (Section 6.3.6.3).


Only a few papers have assessed the role of DAC in mitigation scenarios (e.g. Keith et al., 2006; Keller et al., 2008; Pielke Jr, 2009; Nemet and Brandt, 2012; Chen and Tavoni, 2013). These studies generally show that the contribution of DAC hinges critically on the stringency of the concentration goal, the costs relative to other mitigation technologies, time discounting and assumptions about scalability. In these models, the influence of DAC on the mitigation pathways is similar to that of BECCS (assuming similar costs). That is, it leads to a delay in shortterm emission reduction in favour of further reductions in the second half of the century. Other techniques are even less mature and currently not evaluated in integrated models.


There are some constraints to the use of CDR techniques as emphasized in the scenario analysis. First of all, the potential for BECCS, afforestation, and DAC are constrained on the basis of available land and/or safe geologic storage potential for CO2. Both the potential for sustainable bioenergy use (including competition with other demands, e.g., food, fibre, and fuel production) and the potential to store >100 GtC of CO2 per decade for many decades are very uncertain (see previous section) and raise important societal concerns. Finally, the largescale availability of CDR, by shifting the mitigation burden in time, could also exacerbate intergenerational impacts.


6.9.2    Solar radiation management


6.9.2.1    Proposed solar radiation management methods and characteristics


SRM geoengineering technologies aim to lower the Earth’s temperature by reducing the amount of sunlight that is absorbed by the Earth’s surface, and thus countering some of the GHG induced global warming. Most techniques work by increasing the planetary albedo, thus reflecting a greater fraction of the incoming sunlight back to space. A number of SRM methods have been proposed:


   Mirrors (or sunshades) placed in a stable orbit between the Earth and Sun would directly reduce the insolation the Earth receives (Early, 1989; Angel, 2006). Studies suggest that such a technology is unlikely to be feasible within the next century (Angel, 2006). 


   Stratospheric aerosol injection would attempt to imitate the global cooling that large volcanic eruptions produce (Budyko and Miller, 1974; Crutzen, 2006; Rasch et al., 2008). This might be achieved by lofting sulphate aerosols (or other aerosol species) or their precursors to the stratosphere to create a highaltitude reflective layer that would need to be continually replenished. Section 7.7.2.1 of WG I assessed that there is medium confidence that up to 4 Wm2 of forcing could be achieved with this approach.


   Cloud brightening might be achieved by increasing the albedo of certain marine clouds through the injection of cloud condensation nuclei, most likely sea salt, , producing an effect like that seen when shiptracks of brighter clouds form behind polluting ships (Latham, 1990; Latham et al.,2008, 2012). Section 7.7.2.2 of WG I assessed that too little was known about marine cloud brightening to provide a definitive statement on its potential efficacy, but noted that it might be sufficient to counter the radiative forcing that would result from a doubling of CO2 levels. 
   Various methods have been proposed that could increase the albedo of the planetary surface, for example in urban, crop, and desert regions (Presidents Science Advisory Committee. Environmental Pollution Panel, 1965; Gaskill, 2004; Hamwey, 2007; Ridgwell et al., 2009). These methods would likely only be possible on a much smaller scale than those listed above. Section 7.7.2.3 of WG I discusses these approaches.


This list is nonexhaustive and new proposals for SRM methods may be put forward in the future. Another method that is discussed alongside SRM methods aims to increase outgoing thermal radiation, reducing incoming solar radiation, through the modification of cirrus clouds (Mitchell and Finnegan, 2009) (see WG I Section 7.7.2.4). 


As SRM geoengineering techniques only target the solar radiation budget of the Earth, the effects of CO2 and other GHGs on the Earth System would remain, for example, greater absorption and re-emission of thermal radiation by the atmosphere (WG I Section 7.7), an enhanced CO2 physiological effect on plants (WG I Section 6.5.4), and increased ocean acidification (Matthews et al., 2009). Although SRM geoengineering could potentially reduce the global mean surface air temperature, no SRM technique could fully return the climate to a preindustrial or lowCO2like state. One reason for this is that global mean temperature and global mean hydrological cycle intensity cannot be simultaneously returned to a preindustrial state (Govindasamy and Caldeira, 2000; Robock et al., 2008; Schmidt et al., 2012; Kravitz et al., 2013; MacMartin et al., 2013; Tilmes et al., 2013). Section 7.7.3 of WG I details the current state of knowledge on the potential climate consequences of SRM geoengineering. In brief, simulation studies suggest that some SRM geoengineering techniques applied to a highCO2 climate could create climate conditions more like those of a lowCO2 climate (MorenoCruz et al., 2011; MacMartin et al., 2013), but the annual mean, seasonality, and interannual variability of climate would be modified compared to the preindustrial climate  (Govindasamy and Caldeira, 2000; Lunt et al., 2008; Robock et al., 2008; BanWeiss and Caldeira, 2010; MorenoCruz et al., 2011; Schmidt et al., 2012; Kravitz et al., 2013; MacMartin et al., 2013). SRM geoengineering that could reduce global mean temperatures would reduce thermosteric sealevel rise and would likely also reduce glacier and icesheet contributions to sealevel rise (Irvine et al., 2009, 2012; Moore et al., 2010).


Model simulations suggest that SRM would result in substantially altered global hydrological conditions, with uncertain consequences for specific regional responses such as precipitation and evaporation in monsoon regions (Bala et al., 2008; Schmidt et al., 2012; Kravitz et al., 2013; Tilmes et al., 2013) . In addition to the imperfect cancellation of GHGinduced changes in the climate by SRM, CO2 directly affects the opening of plant stomata, and thus the rate of transpiration of plants and in turn the recycling of water over continents, soil moisture, and surface hydrology (Bala et al., 2007; Betts et al., 2007; Boucher et al., 2009; Spracklen et al., 2012). 
Due to these broadly altered conditions that would result from an implementation of geoengineering, and based on experience from studies of the detection and attribution of climate change, it may take many decades of observations to be certain whether SRM is responsible for a particular regional trend in climate (Stone et al., 2009; MacMynowski et al., 2011). These detection and attribution problems also imply that field testing to identify some of the climate consequences of SRM geoengineering would require deployment at a sizeable fraction of full deployment for a period of many years or even decades (Robock et al., 2010; MacMynowski et al., 2011).


It is important to note that in addition to affecting the planets climate, many SRM methods could have serious nonclimatic sideeffects. Any stratospheric aerosol injection would affect stratospheric chemistry and has the potential to affect stratospheric ozone levels. Tilmes et al. (2009) found that sulphate aerosol geoengineering could delay the recovery of the ozone hole by decades (WG I Section 7.7.2.1). Stratospheric aerosol geoengineering would scatter light, modifying the optical properties of the atmosphere. This would increase the diffusetodirect light ratio, which would make the sky appear hazier (Kravitz et al., 2012), reduce the efficacy of concentrated solar power facilities (Murphy, 2009), and potentially increase the productivity of some plant species, and preferentially those below the canopy layer, with unknown longterm ecosystem consequences (Mercado et al., 2009). The installations and infrastructure of SRM geoengineering techniques may also have some negative effects that may be particularly acute for techniques that are spatially extensive, such as desert albedo geoengineering. SRM would have very little effect on ocean acidification and the other direct effects of elevated CO2 concentrations that are likely to pose significant risks (see WG I Section 6.5.4). 


6.9.2.2    The relation of solar radiation management to climate policy and transformation pathways
A key determinant of the potential role, if any, of SRM in climate policy is that some methods might act relatively quickly. For example, stratospheric aerosol injection could be deployable within months to years, if and when the technology is available, and the climate response to the resulting changes in radiative forcing could occur on a timescale of a decade or less (e.g. Keith, 2000; Matthews and Caldeira, 2007; Royal Society, 2009; Swart and Marinova, 2010; Goes et al., 2011). Mitigating GHG emissions would affect global mean temperatures only on a multidecadal to centennial timescale because of the inertia in the carbon cycle (van Vuuren and Stehfest, 2013). Hence, it has been argued that SRM technologies could potentially complement mitigation activities, for example, by countering global GHG radiative forcing while mitigation activities are being implemented, or by providing a backup strategy for a hypothetical future situation where shortterm reductions in radiative forcing may be desirable (Royal Society, 2009; Rickels et al., 2011). However, the relatively fast and strong climate response expected from some SRM techniques would also impose risks. The termination of SRM geoengineering forcing either by policy choice or through some form of failure would result in a rapid rise of global mean temperature and associated changes in climate, the magnitude of which would depend on the degree of SRM forcing that was being exerted and the rate at which the SRM forcing was withdrawn (Wigley, 2006; Matthews and Caldeira, 2007; Goes et al., 2011; Irvine et al., 2012; Jones et al., 2013). It has been suggested that this risk could be minimized if SRM geoengineering was used moderately and combined with strong CDR geoengineering and mitigation efforts (Ross and Matthews, 2009; Smith and Rasch, 2012). The potential of SRM to significantly impact the climate on short timescales, at potentially low cost, and the uncertainties and risks involved in this raise important sociopolitical questions in addition to natural scientific and technological considerations in the section above.


The economic analysis of the potential role of SRM as a climate change policy is an area of active research and has, thus far, produced mixed and preliminary results (see Klepper and Rickels, 2012). Estimates of the direct costs of deploying various proposed SRM methods differ significantly. A few studies have indicated that direct costs for some SRM methods might be considerably lower than the costs of conventional mitigation, but all estimates are subject to large uncertainties because of questions regarding efficacy and technical feasibility (Coppock, 1992; Barrett, 2008; Blackstock et al., 2009; Robock et al., 2009; Pierce et al., 2010; Klepper and Rickels, 2012; McClellan et al., 2012). 


However, SRM techniques would carry uncertain risks, do not directly address some impacts of anthropogenic GHG emissions, and raise a range of ethical questions (see WG III Section 3.3.8) (Royal Society, 2009; Goes et al., 2011; MorenoCruz and Keith, 2012; Tuana et al., 2012). While costs for the implementation of a particular SRM method might potentially be low, a comprehensive assessment would need to consider all intended and unintended effects on ecosystems and societies and the corresponding uncertainties (Rickels et al., 2011; Goes et al., 2011; Klepper and Rickels, 2012). Because most proposed SRM methods would require constant replenishment and an increase in their implementation intensity if emissions of GHGs continue, the result of any assessment of climate policy costs is strongly dependent on assumptions about the applicable discount rate, the dynamics of deployment, the implementation of mitigation, and the likelihood of risks and sideeffects of SRM (see Bickel and Agrawal, 2011; Goes et al., 2011). While it has been suggested that SRM technologies may buy time for emission reductions (Rickels et al., 2011), they cannot substitute for emission reductions in the long term because they do not address concentrations of GHGs and would only partially and imperfectly compensate for their impacts.


The acceptability of SRM as a climate policy in national and international sociopolitical domains is uncertain. While international commitment is required for effective mitigation, a concern about SRM is that direct costs might be low enough to allow countries to unilaterally alter the global climate (Bodansky, 1996; Schelling, 1996; Barrett, 2008). Barrett (2008) and Urpelainen (2012) therefore argue that SRM technologies introduce structurally obverse problems to the freerider issue in climate change mitigation. Some studies suggest that deployment of SRM hinges on interstate cooperation, due to the complexity of the climate system and the unpredictability of outcomes if states do not coordinate their actions (Horton, 2011). In this case, the political feasibility of an SRM intervention would depend on the ability of statelevel actors to come to some form of agreement. 


The potential for interstate cooperation and conflict will likely depend on the institutional context in which SRM is being discussed, as well as on the relative importance given to climate change issues at the national and international levels. Whether a broad international agreement is possible is a highly contested subject (see Section 13.4.4) (EDF; The Royal Society; TWAS, 2012). Several researchers suggest that a UNbased institutional arrangement for decision making on SRM would be most effective (Barrett, 2008; Virgoe, 2009; Zürn and Schäfer, 2013). So far there are no legally binding international norms that explicitly address SRM, although certain general rules and principles of international law are applicable (see WG II, Chapter 13, p.37). States parties to the UN Convention on Biological Diversity have adopted a nonbinding decision on geoengineering that establishes criteria that could provide guidance for further development of international regulation and governance (CBD Decision IX/16 C (ocean fertilization) and Decision X/33(8)(w); see also LC/LP Resolutions LCLP.1(2008) and LCLP.2(2010), preamble). 


Commentators have identified the governance of SRM technologies as a significant political and ethical challenge, especially in ensuring legitimate decision making, monitoring, and control (Victor,2008; Virgoe, 2009; Bodansky, 2012). Even if SRM would largely reduce the global temperature rise due to anthropogenic climate change, as current modelling studies indicate, it would also imply a spatial and temporal redistribution of risks. SRM thus introduces important questions of intra and intergenerational justice, both distributive and procedural (see Wigley, 2006; Matthews and Caldeira, 2007; Goes et al., 2011; Irvine et al., 2012; Tuana et al., 2012; Bellamy et al., 2012; Preston, 2013).


Furthermore, since the technologies would not remove the need for emission reductions, in order to effectively ameliorate climate change over a longer term SRM regulation would need to be based on a viable relation between mitigation and SRM activities, and consider the respective and combined risks of increased GHG concentrations and SRM interventions. The concern that the prospect of a viable SRM technology may reduce efforts to mitigate and adapt has featured prominently in discussions to date (Royal Society, 2009; Gardiner, 2011; Preston, 2013).
Whether SRM field research or even deployment would be socially and politically acceptable is also dependent on the wider discursive context in which the topic is being discussed. Bellamy et al. (2013) show that the success of mitigation policies is likely to have an influence on stakeholder acceptability of SRM. While current evidence is limited to few studies in a very narrow range of cultural contexts, in a first review of early studies on perceptions of geoengineering, Corner et al. (2012) find that participants of different studies tend to prefer CDR over SRM and mitigation over geoengineering.


Considerations that influence opinions are, amongst others, the perceived ‘naturalness’ of a technology, its reversibility, and the capacity for responsible and transparent governance (Corner et al., 2012). Furthermore, the way that the topic is framed in the media and by experts plays an important role in influencing opinions on SRM research or deployment (Luokkanen et al., 2013; Scholte et al., 2013). The direction that future discussions may take is impossible to predict, since deepened and highly differentiated information is rapidly becoming available (Corner et al., 2012; Macnaghten and Szerszynski, 2013).


6.9.3    Summary


Despite the assumption of some form of negative CO2 emissions in many scenarios, including those leading to 2100 concentrations approaching 450 ppmv CO2eq, whether proposed CDR or SRM geoengineering techniques can actually play a useful role in transformation pathways is uncertain as the efficacy and risks of many techniques are poorly understood at present. CDR techniques aim to reduce CO2 (or potentially other GHG) concentrations. A broad definition of CDR would cover afforestation and BECCS, which are sometimes classified as mitigation techniques, but also proposals that are very distinct in terms of technical maturity, scientific understanding, and risks from mitigation such as ocean iron fertilization. The former are often included in current integrated models and scenarios and are, in terms of their impact on the climate, directly comparable with techniques that are considered to be conventional mitigation, notably fossil CCS and bioenergy use. Both BECCS and afforestation may play a key role in reaching lowGHG concentrations, but at a large scale have substantial landuse demands that may conflict with other mitigation strategies and societal needs such as food production. Whether other CDR techniques would be able to supplement mitigation at any significant scale in the future depends upon efficacy, cost, and risks of these techniques, which at present are highly uncertain. The properties of potential carbon storage reservoirs are also critically important, as limits to reservoir capacity and longevity will constrain the quantity and permanence of CO2 storage. Furthermore, some CDR techniques such as ocean iron fertilization may pose transboundary risks. The impacts of CDR would be relatively slow: climate effects would unfold over the course of decades.


In contrast to CDR, SRM would aim to cool the climate by shielding sunlight. These techniques would not reduce elevated GHG concentrations, and thus not affect other consequences of highGHG concentrations, such as ocean acidification. Some SRM proposals could potentially cause a large cooling within years, much quicker than mitigation or CDR, and a few studies suggest that costs might be considerably lower than CDR for some SRM techniques. It has thus been suggested that SRM could be used to quickly reduce global temperatures or to limit temperature rise while mitigation activities are being implemented. However, to avoid warming, SRM would need to be maintained as long as GHG concentrations remain elevated. Modelling studies show that SRM may be able to reduce global average temperatures but would not perfectly reverse all climatic changes that occur due to elevated GHG concentrations, especially at local to regional scales. For example, SRM is expected to weaken the global hydrological cycle with consequences for regional precipitation patterns and surface hydrology, and is expected to change the seasonality and variability of climate. Because the potential climate impacts of any SRM intervention are uncertain and evidence is very limited, it is too early to conclude how effective SRM would be in reducing climate risks. SRM approaches may also carry significant nonclimatic sideeffects. For example, sulphate aerosol injection would modify stratospheric chemistry, potentially reducing ozone levels, and would change the appearance of the sky. The risks of SRM interventions and largescale experiments, alongside any potential benefits, raise a number of ethical and political questions that would require public engagement and international cooperation to address adequately.  


6.10   Gaps in knowledge and data


The questions that motivate this chapter all address the broad characteristics of possible longterm transformation pathways toward stabilization of GHG concentrations. The discussion has not focused on today’s global or countryspecific technology strategies, policy strategies, or other elements of a nearterm strategy. It is therefore within this longterm strategic context that gaps in knowledge and data should be viewed. Throughout this chapter, a number of areas of further development have been highlighted. Several areas would be most valuable to further the development of information and insights regarding longterm transformation pathways.


These include the following: development of a broader set of socioeconomic and technological storylines to support the development of future scenarios; scenarios pursuing a wider set of climate goals including those related to temperature change; more mitigation scenarios that include impacts from, and adaptations to, a changing climate, including energy and landuse systems critical for mitigation; expanded treatment of the benefits and risks of CDR and SRM options; expanded treatment of cobenefits and risks of mitigation pathways; improvements in the treatment and understanding of mitigation options and responses in enduse sectors in transformation pathways; and more sophisticated treatments of land use and land usebased mitigation options in mitigation scenarios. In addition, a major weakness of the current integrated modelling suite is that regional definitions are often not comparable across models. An important area of advancement would be to develop some clearly defined regional definitions that can be met by most or all models.


6.11   Frequently Asked Questions


FAQ 6.1. Is it possible to bring climate change under control given where we are and what options are available to us? What are the implications of delaying mitigation or limits on technology options? 


Many commonly discussed concentration goals, including the goal of reaching 450 ppm CO2eq by the end of the 21st century, are both physically and technologically possible. However, meeting longterm climate goals will require largescale transformations in human societies, from the way that we produce and consume energy to how we use the land surface, that are inconsistent with both longterm and shortterm trends. For example, to achieve a 450 ppm CO2eq concentration by 2100, supplies of lowcarbon energy energy from nuclear power, solar power, wind power, hydroelectric power, bioenergy, and fossil resources with carbon dioxide capture and storage might need to increase fivefold or more over the next 40 years. The possibility of meeting any concentration goal therefore depends not just on the available technologies and current emissions and concentrations, but also on the capacity of human societies to bear the associated economic implications, accept the associated rapid and largescale deployment of technologies, develop the necessary institutions to manage the transformation, and reconcile the transformation with other policy priorities such as sustainable development. Improvements in the costs and performance of mitigation technologies will ease the burden of this transformation. In contrast, if the world’s countries cannot take on sufficiently ambitious mitigation over the next 20 years, or obstacles impede the deployment of important mitigation technologies at large scale, goals such as 450 ppm CO2eq by 2100 may no longer be possible. 


FAQ 6.2. What are the most important technologies for mitigation? Is there a silver bullet
technology?


Limiting CO2eq concentrations will require a portfolio of options, because no single option is sufficient to reduce CO2eq concentrations and eventually eliminate net CO2 emissions. Options include a range of energy supply technologies such as nuclear power, solar energy, wind power, and hydroelectric power, as well as bioenergy and fossil resources with carbon dioxide capture and storage. A range of enduse technologies will be needed to reduce energy consumption, and therefore the need for lowcarbon energy, and to allow the use of lowcarbon fuels in transportation, buildings, and industry. Halting deforestation and encouraging an increase in forested land will help to halt or reverse LUC CO2 emissions. Furthermore, there are opportunities to reduce nonCO2 emissions from land use and industrial sources. Many of these options must be deployed to some degree to stabilize CO2eq concentrations. A portfolio approach can be tailored to local circumstances to take into account other priorities such as those associated with sustainable development. At the same time, if emissions reductions are too modest over the coming two decades, it may no longer be possible to reach a goal of 450 ppm CO2eq by the end of the century without largescale deployment of carbon dioxide removal technologies. Thus, while no individual technology is sufficient, carbon dioxide removal technologies could become necessary in such a scenario.


FAQ 6.3. How much would it cost to bring climate change under control?



Aggregate economic mitigation cost metrics are an important criterion for evaluating transformation pathways and can indicate the level of difficulty associated with particular pathways. However, the broader socioeconomic implications of mitigation go beyond measures of aggregate economic costs, as transformation pathways involve a range of tradeoffs that link to other policy priorities. Global mitigation cost estimates vary widely due to methodological differences along with differences in assumptions about future emissions drivers, technologies, and policy conditions. Most scenario studies collected for this assessment that are based on the idealized assumptions that all countries of the world begin mitigation immediately, there is a single global carbon price applied to wellfunctioning markets, and key technologies are available, find that meeting a 430-480 ppm CO2eq goal by century’s end would entail a reduction in the amount global consumers spend of 1-4% in 2030, 2-6% in 2050, and 3-11% in 2100 relative to what would happen without mitigation. To put these losses in context, studies assume that consumption spending might grow from four to over tenfold over the century without mitigation. Less ambitious goals are associated with lower costs this century. Substantially higher and lower estimates have been obtained by studies that consider interactions with preexisting distortions, nonclimate market failures, and complementary policies. Studies explicitly exploring the implications of lessidealized policy approaches and limited technology performance or availability have consistently produced higher cost estimates. Delaying mitigation would reduce nearterm costs; however studies indicate that subsequent costs will rise much more rapidly to higher levels.


The complete chapters and report here:


Chapter 3 
Social, Economic and Ethical
Concepts and Methods 

Chapter 6  
Assessing Transformation Pathways

Final Draft:
Climate Change 2014: Mitigation of Climate Change
IPCC Working Group III Contribution to AR5


Creative Commons License
A #Geoengineering #Climate Issues blog - Geoingeniería by Oscar and Jocelyn Escobar is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.Licencia Creative Commons
A #Geoengineering #Climate Issues blog por Oscar y Jocelyn Escobar se distribuye bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.